
 1

Table of Contents 
 
 
 
Experiment #0   PC Hardware and Operating System........................................................... 2 
 
Experiment #1   Introduction to Debug and Turbo Debugger ................................................ 7 
 
Experiment #2   Addressing modes and data transfer instructions........................................ 15 
 
Experiment #3   Arithmetic instructions ............................................................................ 23 
 
Experiment #4   Shift and rotate instructions...................................................................... 27 
 
Experiment #5   Using BIOS Services and DOS functions Part 1: Text-based Graphics ........ 35 
 
Experiment #6   Using BIOS Services and DOS functions Part 2: Pixel-based Graphics ....... 45 
 
Experiment #7   Introduction to Flight86 Microprocessor Trainer and Application Board ..... 52 
 
Experiment #8   Flight86 Application I – Traffic Lights ................................................ 63 
 
Experiment #9   Flight86 Application II – Motor Control .............................................. 69 
 
Experiment #10 Introduction to the 8051 Microcontroller ............................................. 78 
 
Appendix A – 8051 Instruction Set ............................................................................... 92 
 
Appendix B – 8051 Special Function Registers ............................................................ 97 
 
Appendix C - An Introduction to WinLV .................................................................... 98 



 2

Experiment #0 
 

PC Hardware and Operating Systems 
     

Objective:  
 
The objective of this experiment is to introduce the operating systems and different 

hardware components of a microcomputer.  

 

Equipment: Microcomputer 
 

Introduction:  
 
Microcomputer (PC) operating systems are briefly discussed in this experiment. The two 

commonly used operating systems in PC are MS-DOS and Windows (95, 98,etc..). In the 

MS-DOS environment, command line is used to view, copy or interact with stored files. 

In Windows environment, clicking the mouse performs these operations in a user friendly 

manner. First part of this experiment introduces the file management in MS DOS mode. 

In the second part a 386 microcomputer is disassembled and its hardware components are 

identified. Finally the PC is reassembled in the laboratory.   

 

Pre-lab:  
Use any computer with 'Windows', to do the following operations: 

1. In Windows operating system, use 'Start' and 'Find' menu to locate the 'Debug' 

program. Note the address or path. 

2. From 'Start' and 'Programs' menu, use 'Windows Explorer' to make a new 

directory in C drive and name it 'EE 390'. 

3. Using 'Copy' and 'Paste' command of 'Windows Explorer' copy the 'Debug.exe' 

program in to the newly created directory of 'EE390' 

4. Execute the 'Debug' program by clicking on it. (type 'q' to quit)  

5. Also execute the 'Debug' program, from 'Start' and 'Run' menu. 

6. From 'Start' and 'Programs' menu, click on 'MS-DOS prompt' to start the MS-DOS 

debugger. Type 'Debug' and press <enter> to execute the program. Type 'q' to quit 

the debug program.  



 3

Lab Work1: 
1. Use the Lab microcomputer to perform the following operations; 

a. In MS-DOS mode, ‘C :\>' means we are in the main directory. Go to this 

directory and use 'DIR' to check the contents of the directory.  

b. Use 'CD' or change directory command to go to 'DOS' directory. 

c. Use 'DIR' to find Debug program in this directory (type 'DIR  D* ') 

d. Execute the Debug program. (Type 'Debug' and press <enter>). To quite 

the debugger, type 'q' in the debug prompt '-' and press enter.  

 

2. Use the computer hardware to locate the following components; 

a. Hard disk: Find the storage capacity and manufacturer of the disk.  

b. ROM: Find its manufacturer and storage capacity. 

c. RAM: Try to find the total storage capacity of RAM and the capacity of 

individual RAM circuits. 

d. CPU: Find its manufacturer and the operating speed.  

 

3. What is a BUS.? Can you see any? 

4. Find the power supply and what voltages are supplied by it. 

5. Where is the Mother board? Locate the Clock in it. 

6. Where are ISA and PCI sockets in the mother board? What do they do? 

7. Is there any input/output cards attached to the mother board. If so, what external 

devices can you connect to them? 

8. Name the ports at the back of the computer. Write the total number of pins in each 

port and what devices can be connect to them. 

Lab Report:  

The lab report should contain: 1.OBJECTIVE, 2.INTRODUCTION, 3.RESULTS 

(observed in the pre-lab and in the experiment) and 4.CONCLUSION.   

                                                 
1 Make sure you know the hardware components as there will be a quiz in this topic. 



 4

 
 
 
 
 
 

 

 



 5

 
 

Hard Disk Drive 

CD-ROM Drive 



 6

Basic Components on a Motherboard 
 

 
 

1 ISA (Industry Standard Architecture) bus slots for plugging in older 8 and 16-bit 
adapter cards. 

2 PCI (Peripheral Component Interconnect) bus slots for plugging in newer 32-bit 
adapter cards. 

3 Hard drive controller connectors. 
4 Power connector. 
5 Parallel port connector. 
6 Floppy disk controller connector. 
7 SIMM (Single In-line Memory Module) sockets for adding memory. 
8 Lithium backup battery for the CMOS. 
9 Configuration jumper block for changing the ISA bus clock, clearing a CMOS 

password, resetting the CMOS to the default settings, etc. 
10 Front panel connectors for the internal speaker, keyboard and hard drive lights, +12v 

fan, etc. 
11 Pentium processor in a Socket 5 connector. 
12 256K cache (those systems with an external cache only). 
 



 7

Experiment #1 
 

MS-DOS Debugger (DEBUG) 
 

 
1.0 Objectives:   

The objective of this experiment is to introduce the "DEBUG” program that comes with 

MS-DOS and Windows operating systems. This program is a basic tool to write, edit and 

execute assembly language programs. 

In this experiment, you will learn DEBUG commands to do the following: 

• Examine and modify the contents of internal registers 

• Examine and modify the contents of memory 

• Load, and execute an assembly language program 

 
1.1 Introduction:  

DEBUG program which is supplied with both DOS and Windows, is the perfect tool for 

writing short programs and getting acquainted with the Intel 8086 microprocessor. It 

displays the contents of memory and lets you view registers and variables as they change. 

You can use DEBUG to test assembler instructions, try out new programming ideas, or to 

carefully step through your program. You can step through the program one line at a time 

(called tracing), making it easier to find logic errors. 

 

1.2 Debugging Functions 

Some of the basic functions that the debugger can perform are the following: 
• Assemble short programs 
• View a program’s source code along with its machine code 
• View the CPU registers and flags (See Table 1 below) 
• Trace or execute a program, watching variables for changes 
• Enter new values into memory 
• Search for binary or ASCII values in memory 
• Move a block of memory from one location to another 
• Fill a block of memory 
• Load and write disk files and sectors 

 



 8

The following table shows a list of some commonly used DEBUG commands. 

COMMAND SYNTAX FUNCTION EXAMPLE 

Register R [Register Name] 
Examine or modify the contents of an 

internal register of the CPU 

-R AX     (AX reg.) 

-R F         (flags) 

Dump D [Address] 
Display the contents of memory 

locations specified by Address 

-D DS:100 200 

-D  start-add   end-add 

Enter E [Register Name] 
Enter or modify the contents of the 

specified memory locations 

-E DS:100 22 33 

-E  address  data  data 

Fill F [Register name] Fill a block of memory with data -F DS:100 120 22 

Assemble A [Starting address] 
Convert assembly lang. instructions 

into machine code and store in memory 

-A CS:100 

-A  start-address 

Un-assemble U [Starting Address] 
Display the assembly instructions and 

its equivalent machine codes 

-U CS:100 105 

-U  start-add   end-add 

Trace T [Address][Number] 
Line by line execution of specific 

number of assembly lang. instructions 

-T=CS:100 

-T=starting-address 

Go 
G [Starting Address] 

[Breakpoint Add.] 

Execution of assembly language 

instructions until Breakpoint address 

-G=CS:100 117 

-G=start-add   end-add 

Table 1: DEBUG commands 

The Internal Registers and Status Flags of the 8086 uP are shown in the following tables. 

Flag Meaning SET RESET Flag Meaning SET RESET 

CF Carry CY NC SF Sign NG PL 

PF Parity PE PO IF Interrupt EI DI 

AF Auxiliary AC NA DF Direction DN UP 

ZF Zero ZR NZ OF Overflow OV NV 

 

AX BX CX DX SI DI SP BP 

DS CS ES SS IP 8086 Internal Registers 

Table 2: Internal Registers and Status Flags 

 



 9

1.3 Pre-lab: 
1. Name a few computer operating systems. Which operating system do you mostly 

use? 

2. What is the full form for MS-DOS? 

3. What is the difference between a logical address and a physical address? Show 

how a physical address is generated from a logical address. 

4. What are the following registers used for: DS, CS, SS, SP, IP, AX 

5. Define the function each of the following flag bits in the flag register: Overflow, 

Carry, Sign, and Zero. 

 



 10

1.4 Lab Work: 
A. Loading the DEBUG program 

1. Load the DEBUG program by typing debug at the MS-DOS prompt, as shown in 

the example below:  

C:\WINDOWS>debug 

2. You will see a dash (-) in the left-most column on the screen. This is the DEBUG 

prompt. 

3. Type a (?) to see a list of available commands. 

4. Return to MS-DOS by entering Q. What prompt do you see? 

Note: You have to hit Carriage Return (CR) key (or ENTER key) on the keyboard 

after you type any debug command. 

B. Examining and modifying the contents of the 8086’s internal registers 

1. Use the REGISTER command to display the current contents of all the internal 

registers by typing R. 

o List the values of the following registers: 

AX  SP  

BX  CS  

CX  DS  

DX  SS  

IP  ES  

o What is the address of the next instruction to be executed? 

o What is the instruction held at this address? 

2. Enter the command: R AH (hit <CR>) 

 What happens and why? 

3. Use a REGISTER command to first display the current contents of BX and then 

change this value to 0020h. 



 11

4. Use a REGISTER command to first display the current contents of IP and then 

change this value to 0200h. 

5. Use a REGISTER command to first display the current contents of the flag 

register and then set the parity, zero, and carry flags. 

6. Redisplay the contents of all the internal registers. Compare the displayed register 

contents with those observed in step 1 above. What instruction is now pointed by 

CS: IP? 

C. Examining and modifying the contents of memory 

1. Use the DUMP command (D) to display the first 100 bytes of the current data 

segment. 

2. Use the DUMP command (D) to display the first 100 bytes of the code segment 

starting the current value of CS: IP. 

3. Use the ENTER command (E) to load locations CS:100, CS:102, and CS:104 

with 11, 22, and 33, respectively. 

4. Use the ENTER command (E) to load five consecutive byte-wide memory 

locations starting at CS:105 with data ‘FF’. 

5. Verify the result of steps 3 and 4 using the DUMP command. 

6. Use the FILL command (F) to initialize the 16 storage locations starting at DS:10 

with the value AAh, the 16 storage locations starting at address DS:30 with BBh, 

the 16 storage locations starting at address DS:50 with CCh, and the 16 storage 

locations starting at address DS:70 with DDh 

7. Verify the result of step 6 using the DUMP command. 



 12

D. Coding instructions in 8086 machine language 

1. Enter each of the following instructions starting at address CS:100 one-by-one 

using the ASSEMBLE command (A). 

MOV AX,BX 

MOV AX, AAAAh 

MOV AX,[BX] 

MOV AX,[0004H] 

MOV AX,[BX+SI] 

MOV AX,[SI+4H] 

MOV AX,[BX+SI+4H] 

 

2. Using the UNASSEMBLE command (U), obtain 

a. the machine code of each of the instructions in step 1 

b. the number of bytes required to store each of the machine code 
instructions in step 1.  

c. the starting address of each instruction. 

 

Instruction Machine Code Bytes required Starting Address

MOV AX, BX    

MOV AX, AAAAH    

MOV AX,[BX]    

MOV AX,[0004H]    

MOV AX,[BX+SI]    

MOV AX,[SI+4H]    

MOV AX,[BX+SI+4H]    

 

d. Why are the starting addresses of the above instructions not consecutive? 



 13

E. Coding instructions in 8086 machine language 

1. Using the ASSEMBLE command (A), load the program shown below into 

memory starting at address CS: 0100. 

  MOV     SI, 0100H 
  MOV     DI, 0200H
  MOV     CX, 010H 
BACK:  MOV    AH, [SI]  
  MOV     [DI], AH 
  INC SI 
  INC DI 
  DEC       CX  
  JNZ       BACK  

 

2. Verify the loading of the program by displaying it with the UNASSEMBLE (U) 

command. 

a. How many bytes of memory does the program take up? 

b. What is the machine code for the DEC CX instruction? 

c. What is the address offset for the label BACK? 

3. Fill 16 bytes of memory locations starting at DS: 0200 with value 45H and verify. 

4. Execute the above program one instruction at a time using the TRACE command 

(T). Observe how the values change for registers: AX, CX, SI, DI flag register, 

and IP. 

5. Run the complete program by issuing a single GO command (G).  

a. What is the starting address for this command? 

b. What is the ending address for this command? 

6. What are the final values of registers: AX, CX, SI, and DI? 

7. Describe the function of the above program. 

 

 



 14

F. Music Program 

This program generates a musical tone every time a key pressed. It generates 8 tones in 

total and then stops. 

1. Using the ASSEMBLE command (A), load the program shown below into 

memory starting at address CS: 0100. 

 
LEA SI, TUNE 
CLD 

BACK:  MOV AH, 0 
INT 16H 
LODSW 
MOV BX, AX 
CMP AX, 0 
JZ L1 
MOV AL, 0B6H
OUT 43H, AL 
MOV AL, BL 
OUT 42H, AL 
MOV AL, BH 
OUT 42H, AL 
IN AL, 61H 
OR AL, 3 
OUT 61H, AL 

  JMP BACK 

L1:   IN AL, 61H 
AND AL, 0FCH 
OUT 61H, AL 
INT 20H 

 
TUNE: 

DW 11D1H 
DW 0FDFH 
DW 0E24H 
DW 0D59H 
DW 0BE4H 
DW 0A98H 
DW 0970H 
DW 08E9H 
DW 0000 

 

 
2. Verify the loading of the program by displaying it with the UNASSEMBLE (U) 

command. 

3. Run the complete program by issuing a single GO command (G).  

a. What is the starting address for this command? 

b. What is the ending address for this command? 

 



 15

Experiment #2 
 

Addressing Modes and Data Transfer using TASM 
 
2.0 Objective 
 
The objective of this experiment is to learn various addressing modes and to verify the 
actions of data transfer. 
 
 
2.1 Introduction 
 
Assembly language program can be thought of as consisting of two logical parts: data and 
code. Most of the assembly language instructions require specification of the location of 
the data to be operated on. There are a variety of ways to specify and find where the 
operands required by an instruction are located. These are called addressing modes. This 
section is a brief overview of some of the addressing modes required to do basic 
assembly language programming. 
 
The operand required by an instruction may be in any one of the following locations 
 

• in a register internal to the CPU 
• in the instruction itself 
• in main memory (usually in the data segment) 

 
Therefore the basic addressing modes are register, immediate, and memory addressing 
modes 
 
1. Register Addressing Mode 
 
Specification of an operand that is in a register is called register addressing mode. For 
example, the instruction 

MOV AX,CX 

requires two operands and both are in the CPU registers. 
 
2. Immediate Addressing Mode 
 
In this addressing mode, data is specified as part of the instruction. For example, in the 
following instruction 

MOV BX,1000H 

the immediate value 1000H is placed into the register BX. 
 
3. Memory Addressing Mode 
 
A variety of modes are available to specify the location of an operand in memory. These 
are direct, register-indirect, based, indexed and based-indexed addressing modes 
 



 16

2.2 Pre-lab: 
 
Using turbo debugger, initialize the registers and memory locations before executing the 
following statements and fill the corresponding columns in Table 1. 
 
Example: Initialize AL=10H, SI=30H, BX=1000H, memory location DS:1030H=2AH 

MOV AL,[BX+SI]  
(see TABLE 1 for the results after execution of this instruction) 

 

a. Initialize AX=200H; DI=50H; memory location DS:58H=9C, DS:59H=9C 
MOV AX,[DI+8] 

b. Initialize BX=1111H; 
MOV BX,2000H 

c. Initialize BX=1010H; CX=2222H 
XCHG BX,CX 

d. Initialize AX=2222H; DI=80H; memory location DS:80H=55H, DS:81H=55H 
MOV [DI],AX 

e. Initialize AX=1000H; BX=200H; SI=10H; memory location DS:215H=2222H 
MOV AX,[BX+SI+5] 

f. Initialize AX=0H; BP=100H; memory location DS:102H=11H, DS:103H=11H 
MOV  AX,[BP+2] 

Source Destination 
Statement Register/

Memory Contents Register/
Memory 

Contents before 
execution 

Contents after 
execution 

Addressing 
Mode 

MOV AL,[BX+SI] Memory 2A Memory 10 2A Based indexed 

MOV AX,[DI+8]       

MOV BX,2000H       

XCHG BX,CX       

MOV [DI],AX       

MOV AX,[BX+SI+5]       

MOV  AX,[BP+2]       

TABLE 1 



 17

2.3 Lab Work: 
 

USING AN ASSEMBLER 
In Experiment 1, we learned to use the DEBUG program development tool that is 
available in the PC’s operating system. This DEBUG program has some limitations. 
Program addresses must be computed manually (usually requiring two phases – one to 
enter the instructions and a second to resolve the addresses), no inserting or deleting of 
instructions is possible, and symbolic addresses cannot be used. All of these limitations 
of DEBUG can be overcome by using the proper assembly language tools. 

Assembly language development tools, such as Microsoft’s macro-assembler (MASM), 
Borland’s Turbo assembler (TASM) together with the linker programs, are available for 
DOS. An assembler considerably reduces program development time. 

Using an assembler, it is very easy to write and execute programs. When the program is 
assembled, it detects all syntax errors in the program – gives the line number at which an 
error occurred and the type of error.  

We will be using the Turbo assembler (TASM) and linker (TLINK) programs in this lab. 
Program Template 
The following program template must be followed when using the Turbo assembler to 
write programs. 

 

TITLE        “Experiment 2” Short description of program

.MODEL SMALL  Assembler directive for memory model (up to 64KB)

.STACK 032h Assembler directive for stack segment (reserves 50 bytes)

.DATA Assembler directive that defines data segment

………….. (reserve memory space for constants and variables )

.CODE Assembler directive that defines code segment 

………….. (type your assembly language program here)
…………..

; (this is a comment starting with ‘;’)

END Assembler directive indicates end of program

 
Any line starting with a ‘;’ (semi-colon) is considered a comment and is ignored by the 
assembler. 

A typical program development cycle using an assembler as a development tool is 
illustrated in the flowchart below. 



 18

Given problem

Describe problem

Implement flowchart using 
assembler language

Plan steps of solution

Syntax errors?

Enter/edit source program 
using the editor

Assemble the program using 
the assembler

Link the program using 
TLINK

Execute and debug using a 
debugger program

Logic errors?

Solution to 
problem

Flowchart

Hand-written source program

Assembler source program file

Object module

Executable run 
module

Yes

No

Yes

No

A general program development cycle

C:\> EDIT file.asm

To edit source file, type

C:\> TASM file

To assemble source file, type

C:\> TLINK file
To link object file, type

C:\> file
To execute program, type

C:\> TD file
To debug program, type

Important: all source files must be 
given extension of “.asm”



 19

2.4 EXAMPLES 

Program 1: Enter the following program in an editor.  Save the program as 
“program1.asm”. Assemble and link the program. Since the program does nothing except 
for transferring the contents from one register to another, view and verify the action of 
each statement using turbo debugger. 

TITLE  "Program to verify register and immediate addressing modes" 
.MODEL SMALL   ; this defines the memory model   
.STACK 100    ; define a stack segment of 100 bytes 
.DATA    ; this is the data segment 
 
.CODE     ; this is the code segment 
 

MOV AX,10   ;copy AX with hex number 10 
MOV BX,10H   ;copy BX with hex number 10 
MOV CL,16D   ;copy CL with decimal number 16 
MOV CH,1010B  ;copy CH with binary number 1010 
INC AX   ;increment the contents of AX register 
MOV SI,AX   ;copy SI with the contents of AX 
DEC BX   ;decrement the contents of BX register 
MOV BP,BX   ;copy BP with the contents of BX register 
 
MOV AX,4C00H  ; Exit to DOS function 
INT 21H 

 
END     ; end of the program 

 
In assembler we have to explicitly perform many functions which are taken for granted in 
high level languages. The most important of these is exiting from a program. The last two 
lines 

MOV AX,4C00H 
INT 21H 

in the code segment are used to exit the program and transfer the control back to DOS. 

Procedure (to be followed for all programs): 

a. Edit the above program using an editor. Type “edit program1.asm” at the DOS 
prompt. Save your file and exit the editor. Make sure your file name has an extension 
of “.asm”. 

b. Assemble the program created in (a). Type “tasm program1” at the DOS prompt. If 
errors are reported on the screen, then note down the line number and error type from 
the listing on the screen. To fix the errors go back to step (a) to edit the source file. If 
no errors are reported, then go to step (c). 

c. Link the object file created in (b). Type “tlink program1” at the DOS prompt. This 
creates an executable file “program1.exe”.  

d. Type “program1” at the DOS prompt to run your program. 

Note: You have to create your source file in the same directory where the TAMS.exe and 
TLINK.exe programs are stored. 



 20

Program 2: Write a program for TASM that stores the hex numbers 20, 30, 40, and 50 
in the memory and transfers them to AL, AH, BL, and BH registers. Verify the program 
using turbo debugger; specially identify the memory location where the data is stored. 

 
 
TITLE  "Program to verify memory addressing modes" 
.MODEL SMALL  ; this defines the memory model   
.STACK 100   ; define a stack segment of 100 bytes 
.DATA   ; this is the data segment 
 
    num      DB   10,20,30,40 ; store the four numbers in memory 
 
.CODE    ; this is the code segment 
  
 MOV AX,@DATA ; get the address of the data segment 

MOV DS,AX  ; and store it in register DS  
 

LEA SI,num  ; load the address offset of buffer to store the  
 

MOV AL,[SI]  ; copy AL with memory contents of ‘SI’, i.e. 10 
MOV AH,[SI+1] ; copy AH with memory contents of ‘SI+1’, i.e. 20 
MOV CL,[SI+2] ; copy CL with memory contents of ‘SI+2’, i.e. 30 
MOV CH,[SI+3] ; copy CH with memory contents of ‘SI+3’, i.e. 40 
 
MOV AX, 4C00H ; Exit to DOS function 
INT 21H 

 
END     ; end of the program 

 
 
The directive DB ‘Define Byte’ is used to store data in a memory location. Each data has 
a length of byte. (Another directive is DW ‘Define Word’ whose data length is of two 
bytes) The label ‘num’ is used to identify the location of data. The two instructions 

MOV AX,@DATA 
MOV DS,AX 

together with   LEA SI,num 

are used to find the segment and offset address of the memory location ‘num’. Notice that 
memory addressing modes are used to transfer the data. 
 



 21

Program 3: Write a program that allows a user to enter characters from the keyboard 
using the character input function. This program should also store the characters entered into a 
memory location. Run the program after assembling and linking. Verify the program using turbo 
debugger, specially identify the location where the data will be stored. 

 
TITLE  "Program to enter characters from keyboard" 
.MODEL SMALL   ; this defines the memory model   
.STACK 100    ; define a stack segment of 100 bytes 
.DATA    ; this is the data segment 
 

char_buf      DB   20 DUP(?) ; define a buffer of 20 bytes 
  
.CODE     ; this is the code segment 
 

 MOV AX,@DATA  ; get the address of the data segment 
 MOV DS, AX   ; and store it in register DS  

 
 LEA SI, char_buf  ; load the offset address of char_buf 
 

AGAIN:  MOV AH, 01   ; function for character input from keyboard 
  INT 21H   ; ASCII value is returned in the AL register 

 
 MOV [SI], AL   ; transfer the character typed to memory 

   
 INC SI    ; point to next location in buffer 
 CMP AL, 0DH  ; check if Carriage Return <CR> key was hit 
 JNE AGAIN   ; if not <CR>, then continue input  
 
 MOV AX, 4C00H  ; Exit to DOS function 
 INT 21H 

 
END     ; end of the program 

The directive DB when used with DUP allows a sequence of storage locations to be 
defined or reserved. For example 

DB 20 DUP(?) 

reserves 20 bytes of memory space without initialization. To fill the memory locations 
with some initial value, write the initial value with DUP instead of using ‘question mark’. 
For example DB 20 DUP(10) will reserve 20 bytes of memory space and will fill it with 
the numbers 10. 
 
The Keyboard input function waits until a character is typed from the keyboard. When 
the following two lines 

MOV AH,01 
INT 21H 

are encountered in a program, the program will wait for a keyboard input. The ASCII 
value of the typed character is stored in the AL register. For example if ‘carriage return’ 
key is pressed then AL will contain the ASCII value of carriage return i.e. 0DH  



 22

2.5 EXERCISE 
 
Write a program in TASM that reserves a memory space ‘num1’ of 10 bytes and 
initializes them with the hex number ‘AA’. The program should copy the 10 bytes of data 
of ‘num1’ into another memory location ‘num2’ using memory addressing mode. Verify 
the program using turbo debugger. 
 
Hint : Use DB instruction with DUP to reserve the space for ‘num1’ of 10 bytes with the 
initialized value of ‘AA’. Again use DB with DUP to reserve another space for ‘num2’, 
but without initialization. Use memory content transfer instructions to copy the data of 
‘num1’ to ‘num2’. 



 23

Experiment #3 
 

Arithmetic Instructions 
 
 
3.0 Objective 
 
The objective of this experiment is to learn the arithmetic instructions and write simple 
programs using TASM 
 
 
3.1 Introduction 
 
Arithmetic instructions provide the micro processor with its basic integer math skills. The 
80x86 family provides several instructions to perform addition, subtraction, 
multiplication, and division on different sizes and types of numbers. The basic set of 
assembly language instructions is as follows 
 

Addition:   ADD, ADC, INC, DAA 

Subtraction:  SUB, SBB, DEC, DAS, NEG 

Multiplication: MUL, IMUL 

Division:  DIV, IDIV 

Sign Extension: CBW, CWD 

 

Examples: 

     ADD AX,BX 

adds the content of BX with AX and stores the result in AX register. 
 
     ADC AX,BX 
adds the content of BX, AX and the carry flag and store it in the AX register. It is 
commonly used to add multibyte operands together (such as 128-bit numbers) 
 
     DEC BX 
decreases the content of BX register by one 
 
     MUL CL 
multiplies the content of CL with AL and stores the result in AX register 
 
     MUL CX 
multiplies the content of CX with AX and stores the 16-bit upper word in DX and 16-bit 
lower word in the AX register 
 
     IMUL CL 
is same as MUL except that the source operand is assumed to be a signed binary number 



 24

3.2 Pre-lab: 
 
1. Write a program in TASM that performs the addition of two byte sized numbers that 

are initially stored in memory locations ‘num1’ and ‘num2’.  The addition result 
should be stored in another memory location ‘total’. Verify the result using turbo 
debugger. 

 
[Hint: Use DB directive to initially store the two byte sized numbers in memory locations 
called ‘num1’ and ‘num2’. Also reserve a location for the addition result and call it 
‘total’] 
 
2. Write a program in TASM that multiplies two unsigned byte sized numbers that are 

initially stored in memory locations ‘num1’ and ‘num2’. Store the multiplication 
result in another memory location called ‘multiply’. Notice that the size of memory 
location ‘multiply’ must be of word size to be able to store the result. Verify the result 
using turbo debugger. 

 
 
3.3 Lab Work: 
 
Example Program 1: Write a program that asks to type a letter in lowercase and then 
convert that letter to uppercase and also prints it on screen. 
 
TITLE  "Program to convert lowercase letter to uppercase" 
.MODEL SMALL  ; this defines the memory model   
.STACK 100   ; define a stack segment of 100 bytes 
.DATA   ; this is the data segment 
 
 MSG1  DB ‘Enter a lower case letter: $’ 
 MSG2  DB 0DH,0AH, ‘The letter in uppercase is: ’ 
 CHAR  DB ?, ‘$’   
 
.CODE    ; this is the code segment 
  
 MOV AX,@DATA ; get the address of the data segment 

MOV DS,AX  ; and store it in register DS  
 
 MOV AH,9  ; display string function 

LEA SI,MSG1 ; get memory location of first message 
MOV DX,[SI]  ; and store it in the DX register  

 INT 21H  ; display the string 
 
 MOV AH,01  ; single character keyboard input function 
 INT 21H  ; call the function, result will be stored in AL (ASCII code) 
 
 SUB AL,20H  ; convert to the ASCII code of upper case 
 LEA SI,CHAR ; load the address of the storage location 
 MOV [SI],AL  ; store the ASCII code of the converted letter to memory 
 



 25

 MOV AH,9  ; display string function 
 LEA SI,MSG2 ; get memory location of second message 
 MOV DX,[SI]  ; and store it in the DX register 
 INT 21H  ; display the string 
 

MOV AX, 4C00H ; Exit to DOS function 
INT 21H 

 
String output function is used in this program to print a string on screen. The effective 
address of string must first be loaded in the DX register and then the following two lines 
are executed 

     MOV AH,09 
     INT 21H 
 
Exercise 1: Modify the above program so that it asks for entering an uppercase letter and 
converts it to lowercase. 
 
Example Program 2: The objective of this program is to enter 3 positive numbers from 
the keyboard (0-9), find the average and store the result in a memory location called 
‘AVG’. Run the program in turbo debugger and verify the result. 
 
TITLE  "Program to calculate average of three numbers" 
.MODEL SMALL  ; this defines the memory model   
.STACK 100   ; define a stack segment of 100 bytes 
.DATA   ; this is the data segment 
 
 msg ‘Enter the number: ’,0DH,0AH,’$’ 
 num  DB 3 DUP(?) 
 average DW  ? 
    
 
.CODE    ; this is the code segment 
  
  MOV AX,@DATA ; get the address of the data segment 

 MOV DS,AX  ; and store it in register DS  
 
  MOV CL,03  ; counter to take 3 inputs 
 
START: MOV AH,9  ; display string function 

 LEA SI,msg  ; get memory location of message 
 MOV DX,[SI]  ; and store it in the DX register  

  INT 21H  ; display the string 
 
  MOV AH,01  ; single character keyboard input function 
  INT 21H  ; call the function, result will be stored in AL 
(ASCII) 
 
  SUB AL,30H  ; subtract 30 to convert from ASCII code to number 
  
  LEA SI,num  ; load the address of memory location num 



 26

  MOV [SI],AL  ; and store the first number in this location 
  DEC CL  ; decrement CL 
  CMP CL,0  ; check if the 3 inputs are complete 
  JE ADD_IT  ; if yes then jump to ADD_IT location 
  INC SI   ; if no then move to next location in memory 
  JMP ADD_IT  ; unconditional jump to get the next number 
 
ADD_IT: MOV CL,02  ; counter to add the numbers 
  LEA SI,NUM  ; get the address of the first stored number 
  MOV AL,[SI]  ; store the first number in AL 
AGAIN: ADD AL,[SI+1] ; add the number with the next number 
  CMP CL,0  ; if the numbers are added 
  JE DIVIDE  ; then go to the division 
  INC SI   ; otherwise keep on adding the next numbers to the 
result 
  JMP AGAIN  ; unconditional jump to add the next entry 
 
DIVIDE: MOV AH,0  ; make AX=AL for unsigned division 
  MOV CL,03  ; make divisor=3 to find average of three numbers 
  DIV CL  ; divide AX by CL 
  LEA SI,average ; get the address of memory location average 
  MOV [SI],AX  ; and store the result in the memory  

  
 MOV AX, 4C00H ; Exit to DOS function 
 INT 21H 

 
END     ; end of the program 

 
Exercise 2: Write a program in TASM that calculates the factorial of number 5 and 
stores the result in a memory location. Verify the program using turbo debugger 
[Hint: Since 5! = 5x4x3x2x1, use MUL instruction to find the multiplication. Store 5 in a 
register and decrement the register after every multiplication and then multiply the result 
with the decremented register. Repeat these steps using conditional jump instruction] 
 
Exercise 3: Modify the factorial program such that it asks for the number for which 
factorial is to be calculated using string function and keyboard input function. Assume 
that the number will be less than 6 in order to fit the result in one byte. 



 27

Experiment #4 
 

Shift and Rotate Instructions 
 

 
4.0 Objectives:   

The objective of this experiment is to write programs demonstrating the applications of 

Shift and Rotate instructions. 

In this experiment, you will do the following: 

• Learn to use Shift and Rotate instructions 

• Write programs demonstrating the applications of Shift/Rotate instructions 

• Execute programs using Turbo Debug and TASM 

 
4.1 Introduction:  

Shift Instructions 

The 8086 can perform two types of Shift operations; the logical shift and the arithmetic 
shift. There are four shift operations (SHL, SAL, SHR, and SAR). 
 

Mnemonic Meaning Format Allowed operands 

SAL Shift Arithmetic Left SAL D, count

SHL Shift Logical Left SHL D, count

SAL Shift Arithmetic Right SAR D, count

SHL Shift Logical Right SHR D, count

 

Destination(D) Count
Register 1 
Register CL 
Memory 1 
Memory CL 

 

If the source operand is specified as CL instead of 1, then the count in this register 
represents the number of bit positions the contents of the operand are to be shifted. This 
permits the count to be defined under software control and allows a range of shifts from 1 
to 255 bits. 
 
A logical shift fills the newly created bit position with zero: 
 

 

CF

0

 



 28

An arithmetic shift fills the newly created bit position with a copy of the number’s sign 

bit.  
 

 
The SHL (shift left) instruction performs a logical left shift on the destination operand, 
filling the lowest bit with 0. 
 
 
 
 
Shifting left 1 bit multiplies a number by 2 and shifting left n bits multiplies the operand 
by 2n.  For example: 
 

MOV BL, 5 
SHL   BL, 1 

 
 
The SHR (shift right) instruction performs a logical right shift on the destination operand. 
The highest bit position is filled with a zero. 
 
 

 

 
Shifting right 1 bit divides a number by 2 and shifting right n bits divides the operand by 
2n.  
 
For example: 

MOV DL, 12 
SHR   DL, 1 

 
 
SAL is identical to SHL. SAR (shift arithmetic right) performs a right arithmetic shift on 
the destination operand. An arithmetic shift preserves the number's sign. 
. 
 

 

 

For example: 

MOV BL, -40
SAR   BL, 1 BL = -20

CF

CF

0

CF

0

 

CF



 29

Rotate Instructions 
The 8086 can perform two types of rotate operations; the rotate without carry and the 
rotate through carry. There are four rotate operations (ROL, ROR, RCL, and RCR). 
 

Mnemonic Meaning Format Allowed operands 

ROL Rotate Left ROL D, count

ROR Rotate Right  ROR D, count

RCL Rotate Left through carry RCL D, count

RCR Rotate Right through carry RCR D, count

 

Destination(D) Count
Register 1 
Register CL 
Memory 1 
Memory CL 

 

ROL shifts each bit of a register to the left. The highest bit is copied into both the Carry 
flag and into the lowest bit of the register. No bits are lost in the process. 
 

 

CF
 

 
For example: 

MOV AL,11100010B 
ROL AL,1                            ; AL = 11000101B 
 
MOV BL,0A5H 
MOV CL, 4 
ROL BL, CL                       ; BL = 5AH 

 
 
ROR shifts each bit of a register to the right. The lowest bit is copied into both the Carry 
flag and into the highest bit of the register. No bits are lost in the process. 
 

 

CF
 

 
For example: 

MOV AL, 00001011B 
ROR AL, 1                           ; AL = 10000101B 
 
MOV BL, 90H 
MOV CL, 4 
ROR BL, CL                       ; BL = 09H 

 



 30

RCL (rotate carry left) shifts each bit to the left. It copies the Carry Flag to the least 
significant bit and copies the most significant bit to the Carry flag. 
 

 
CF

 
 

For example: 
CLC                                   ; clear carry flag, CF = 0 
MOV BL,A4H                  ; CF = 0, BL = 10100100B 
RCL BL,1                         ; CF = 1, BL = 01001000B 
RCL BL,1                         ; CF = 0, BL = 10010001B 

 
RCR (rotate carry right) shifts each bit to the right. It copies the Carry Flag to the most 
significant bit and copies the least significant bit to the Carry flag. 
 

 
CF

 
 
For example: 

STC                              ; set carry flag, CF = 1 
MOV AH,14H             ; CF = 1, AH = 00010100B 
RCR AH,1                   ; CF = 0, AH = 10001010B 

 
 



 31

 4.2 Pre-lab: 
 
Run the following instructions in Turbo Debugger and fill the corresponding column for 
each Shift or Rotate instruction. 
 
NOTE: Include the status of flags before and after the execution of shift and rotate 
instructions in Table 1. 
 
1. MOV AL, 6BH 
 SHR AL,1 
 SHL AL,3 
 
2. MOV AX, 0AAAAH 
 MOV CL,8 
 SHL AX,CL 
 
3. MOV AL, 8CH 
 MOV CL,3 
 SAR AL,CL 
 
4. MOV DI, 1000H 
 MOV [DI], 0AAH 
 MOV CL,3 
 SHL BYTE PTR [DI],CL  
 
5. MOV AL, 6BH 
 ROR AL,1 
 ROL AL,3 
 b. 
6. STC 
 MOV AL, 6BH 
 RCR AL,3 
 
7. CLC 
 MOV DI,2000H 
 MOV [DI],0AAH 
 MOV CL,1 
 RCL BYTE PTR [DI],CL 
 
 
 
 
 
 
 
 



 32

TABLE 1 
 

Source Destination Status Flags 

Statement Register
/Memor

y 

Content
s 

Registe
r/Mem

ory 

Contents 
before 

executio
n 

Contents 
after 

executio
n 

A
F 

P
F 

S
F 

Z
F 

C
F 

     
     

     

     

 

SHR AL,1 

 

SHL AL,3      
     

     
SHL AX,CL      

     

     
SAR AL,CL      

     

     SHL BYTE PTR 
[DI],CL      

     

     
     

     

     

 

ROR AL,1 

 

ROL AL,3      
     

     
RCR AL,3      

     

     RCL BYTE PTR 
[DI],CL      

     



 33

4.3 Lab Work: 
 

Multiplication and Division using Shift instructions 
We have seen earlier that the SHL instruction can be used to multiply an operand by 2n 
and the SHR instruction can be used to divide an operand by 2n. 
 
The MUL and DIV instructions take much longer to execute than the Shift instructions. 

Therefore, when multiplying/dividing an operand by a small number it is better to use 

Shift instructions than to use the MUL/DIV instructions. For example MUL BL where 

BL = 2 takes many more clock cycles than SHL AL, 1. 

 

In Exercise 1, and 2, you will write programs to multiply, and divide respectively, using 

shift instructions.  

 

Write each of the programs using the TASM assembler format. Programs 1, 2, and 3 must 

be executed using the Turbo Debugger (TD) program. Program 4 must be directly 

executable from the DOS prompt. 

 

1. Write a program to multiply AX by 27 using only Shift and Add instructions. You 

should not use the MUL instruction. 

 

Recall that shifting left n bits multiplies the operand by 2n. 

If the multiplier is not an absolute power of 2,  
then express the multiplier as a sum of terms which are absolute powers of 2. 

For example, multiply AX by 7. (7 = 4 + 2 + 1 = 22 + 21 + 1)  

Answer = AX shifted left by 2 + AX shifted left by 1 + AX. 

Note: Only the original value of AX is used in each operation above. 

 



 34

2. Write a program to divide AX by 11 using Shift and Subtract instructions. You 

should not use the DIV instruction. Assume AX is a multiple of 11. 

 

Recall that shifting right n bits divides the operand by 2n. 

If the divisor is not an absolute power of 2,  
then express the divisor as a sum of terms which are absolute powers of 2.  

For example, divide AX by 5. (5 = 4 +  1 = 22 +  1)  

Answer = AX shifted right by 2 - AX. 

Note: Only the original value of AX is used in each operation above. 

 

3. Write a program to check if a byte is a Palindrome. [Hint: Use Rotate 

instructions]. If the byte is a Palindrome, then move AAh into BL. Otherwise 

move 00h in BL. 

 

A Palindrome looks the same when seen from the left or the right. 

For example, 11011011 is a Palindrome but 11010011 is not a Palindrome 

 

4. Write a program to display the bits of a register or memory location. Use the INT 
21H interrupts to display data on the display monitor.  

[Hint: Use logical shift instruction to move data bit into the carry flag] 

 

For example, if AL = 55H, then your program must display: 

AL = 0 1 0 1 0 0 1 0 1 

 



 35

Experiment #5 
 

Using BIOS Services and DOS functions 
Part 1: Text-based Graphics 

  
 

5.0 Objectives:   

The objective of this experiment is to introduce BIOS and DOS interrupt service routines 

to be utilized in assembly language programs. 

In this experiment, you will use BIOS and DOS services to write programs that can do 

the following: 

• Read a character/string from the keyboard 

• Output a character/string to the display monitor 

• Clear the display screen  

• and display cursor at a desired location on the screen 

 
5.1 Introduction:  

The Basic Input Output System (BIOS) is a set of x86 subroutines stored in Read-Only 

Memory (ROM) that can be used by any operating system (DOS, Windows, Linux, etc) 

for low-level input/output to various devices. Some of the services provided by BIOS are 

also provided by DOS. In fact, a large number of DOS services make use of BIOS 

services. There are different types of interrupts available which are divided into several 

categories as shown below: 

 

Interrupt Types Description 

0h - 1Fh BIOS Interrupts 

20h - 3Fh DOS Interrupts 

40h - 7Fh reserved 

80h - F0h ROM BASIC 

F1h - FFh not used 
 

 
BIOS and DOS interrupt routines provide a number of services that can be used to write 

programs. These services include formatting disks, creating disk files, reading from or 



 36

writing to files, reading from keyboard, writing to display monitor, etc. The software 

interrupt instruction INT is used for calling these services. 

5.1.1 Text Mode Programming 

 

Positions on the screen are referenced using (row, column) coordinates. The upper left 

corner has coordinates (0,0). For an 80 x 25 display, the rows are 0-24 and the columns 

are 0-79. 



 37

5.1.2 Commonly used DOS functions 
DOS contains many functions that can be accessed by other application programs. These 

functions are invoked using the assembly language instruction INT XX, where XX is 

replaced by the number of the appropriate interrupt. Most of the available functions are 

invoked through the INT 21H instruction. 

Character input with echo (INT 21H, Function 01H): 

Reads a character from the standard input device (usually the keyboard) and echoes it to 

the standard output device (usually the display screen), or waits until a character is 

available. 

Description: (INT 21H, Function 01H) Example 

Invoked with: AH = 01H 

Returns: AL = character input (ASCII code) 

and displays the character on the screen 

MOV AH, 01H 

INT 21H 

MOV [SI],AL     ; store char. in memory 

 

Character input without echo (INT 21H, Function 07H): 

Reads a character from the standard input device (usually the keyboard) without echoing 

it to the standard output device, or waits until a character is available. This function can 

be used when you don’t want the input characters to appear on the display, for example, 

in the case of password entry. 

Description: (INT 21H, Function 07H) Example 

Invoked with: AH = 07H 

Returns: AL = character input (ASCII code) 

MOV AH, 07H 

INT 21H 

MOV [SI],AL     ; store char. in memory 

 

Display Character (INT 21H, Function 02H): 

Displays a character at the standard output device (usually the display screen). 

Description: (INT 21H, Function 02H) Example 

Invoked with: AH = 02H 

DL = ASCII code for the char. to be displayed 

Returns: Nothing 

MOV DL,’A’   ; display character ‘A’ 

MOV AH, 02H 

INT 21H 

 



 38

Display Character String (INT 21H, Function 09H): 

Displays a string of characters at the display screen. The string must be terminated with 

the character ‘$’, which is not displayed. 

Description: (INT 21H, Function 09H) Example 

Invoked with: AH = 09H 

DS : DX = segment : offset of string 

Returns: Nothing 

MSG DB “Welcome”,’$’   ; string 

MOV DX, OFFSET MSG 

MOV AH, 09H 

INT 21H 

 

Exit program and return control to DOS (INT 21H, Function 4CH): 

Terminates current process and returns control either to the parent process or DOS. 

Description: (INT 21H, Function 4CH) Example 

Invoked with: AH = 4CH 

AL = 00H  

Returns: Nothing 

MOV AX, 4C00H 

INT 21H 

 



 39

5.1.3 BIOS Video I/O Services 
The BIOS function requests in this category are used to control text and graphics on the 

PC’s display screen. The function request is chosen by setting the AH register to the 

appropriate value and issuing interrupt 10H. 

Set Video Mode (INT 10H, Function 00H): 

Selects the video mode and clears the screen automatically.  

Description: (INT 10H, Function 00H) Example 

Invoked with: AH = 00H 

AL = mode number to indicate the desired 

video mode  

Returns: Nothing 

MOV AH, 00 

MOV AL, 03H   ; text video mode 

INT 10H 

 

Set Cursor Position (INT 10H, Function 02H):  

Sets the position of the display cursor by specifying the character coordinates.  

Description: (INT 10H, Function 02H) Example 

Invoked with: AH = 2 

BH = video page number (usually 0) 

 DH = row  (0-24) 

 DL = column  (0-79 for 80x25 display) 

 Returns: Nothing 

MOV AH, 02 

MOV BH, 0 

MOV DH, 12       ; row 12 

MOV DL, 40       ; column 40 

INT 10H 

 



 40

5.2 Pre-lab: 
1. The following program allows a user to enter characters from the keyboard using the 

character input function (AH=01) of INT 21h. This program also stores the characters entered 
into a buffer. Run the program after assembling and linking. 

TITLE  "Program to enter characters from keyboard" 
.MODEL SMALL   ; this defines the memory model   
.STACK 100    ; define a stack segment of 100 bytes 
.DATA    ; this is the data segment 
 

char_buf      DB   20 DUP(?) ; define a buffer of 20 bytes 
  
.CODE     ; this is the code segment 
 

MOV AX,@DATA  ; get the address of the data segment 
MOV DS, AX   ; and store it in register DS  

 
LEA SI, char_buf  ; load the address offset of buffer to store the name 
MOV AH, 01   ; DOS interrupt for character input from keyboard 

AGAIN: INT 21H   ; call the DOS interrupt 
 
MOV [SI], AL   ; store character in buffer    
INC SI    ; point to next location in buffer 
CMP AL, 0DH  ; check if Carriage Return <CR> key was hit 
JNE AGAIN   ; if not <CR>, then continue input from keyboard 
 
MOV AX, 4C00H  ; Exit to DOS function 
INT 21H 

 
END     ; end of the program 

Procedure (to be followed for all programs): 

e. Edit the above program using an editor. Type “edit program1.asm” at the DOS 
prompt. Save your file and exit the editor. Make sure your file name has an extension 
of “.asm”. 

f. Assemble the program created in (a). Type “tasm program1” at the DOS prompt. If 
errors are reported on the screen, then note down the line number and error type from 
the listing on the screen. To fix the errors go back to step (a) to edit the source file. If 
no errors are reported, then go to step (c). 

g. Link the object file created in (b). Type “tlink program1” at the DOS prompt. This 
creates an executable file “program1.exe”.  

h. Type “program1” at the DOS prompt to run your program. 

Note: You have to create your source file in the same directory where the TAMS.exe and 
TLINK.exe programs are stored. 



 41

2. Modify the above program such that the characters entered from the keyboard are not echoed 
back on the screen (i.e., they are not displayed when keys are pressed). [Hint: use function 
AH=07 with INT 21h]. After that, add the following lines of code between “JNE AGAIN” 
and MOV AX, 4C00H to display the characters stored in the buffer on the screen. 

 
LEA DI, char_buf  ; load the address offset of buffer to store the name 
MOV DL, [DI]  ; move character to be displayed in DL  
MOV AH, 02   ; DOS interrupt for character output 

BACK: INT 21H   ; call the DOS interrupt 
INC DI   ; point to next location in buffer 
CMP [DI], 0DH  ; check for 0Dh - ASCII value for ENTER key 
JNE BACK   ; if not ENTER key, then continue output to screen 

 

3. The following program clears the screen and positions the cursor at a specified location on 
the screen using INT 10H functions. The program also displays a message string on the 
screen using function 09h of INT 21H. Run the program after assembling and linking. 

TITLE  "Program to enter characters from keyboard" 
.MODEL SMALL   ; this defines the memory model   
.STACK 100    ; define a stack segment of 100 bytes 
.DATA    ; this is the data segment 
 

LF  EQU 10 ; Line Feed character (0A in Hex) 
CR EQU 13 ; Carriage Return character (0D in Hex) 

 
msg1     DB "EE 390 Lab, EE Department, KFUPM ", LF, CR, "$" 
msg2        DB "Press any key to exit", LF, CR, "$" 

 
.CODE 
  
MAIN PROC 

MOV AX,@DATA  ; get the address of the data segment 
MOV DS, AX   ; and store it in register DS  

CALL CLEARSCREEN ; clear the screen 

MOV DH, 10   ; row 10 
MOV DL, 13   ; column 13 
CALL SETCURSOR  ; set cursor position 

LEA DX, msg1  ; load the address offset of message to be displayed 
MOV AH, 09h   ; use DOS interrupt service for string display 
INT 21H   ; call the DOS interrupt 

 MOV DH, 20   ; row 20 
MOV DL, 13   ; column 13 
CALL SETCURSOR  ; set cursor position 

LEA DX, msg2  ; load the address offset of message to be displayed 
MOV AH, 09h   ; use DOS interrupt service for string display 
INT 21H   ; call the DOS interrupt 
 
MOV AX, 4C00H  ; exit to DOS 



 42

INT 21H 
 
MAIN ENDP 

CLEARSCREEN PROC   
 
  MOV AH, 00   ; set video mode 
 MOV AL, 03   ; for text 80 x 25 
  INT 10H   ; call the DOS interrupt 

RET    ; return to main procedure 
 
CLEARSCREEN ENDP 
 
SETCURSOR PROC 
 

MOV AH, 2    ; use DOS interrupt service for positioning screen  
MOV BH, 0   ; video page (usually 0)   
INT 10H   ; call the DOS interrupt 
RET    ; return to main procedure 

 
SETCURSOR ENDP 
 
END MAIN 
 
Notes:  

1. The above program uses three procedures – MAIN, SETCURSOR, and CLEARSCREEN. 
The SETCURSOR and CLEARSCREEN procedures are called from the MAIN procedure 
using the CALL instruction.  

2. The SETCURSOR procedure sets the cursor at a specified location on the screen whereas the 
CLEARSCREEN procedure uses the SET MODE function 00H of INT 10H to set the video 
mode to 80 x 25 text which automatically clears the screen. 

3. You can display a string of characters on the screen, without using a loop, by using 
MOV AH, 09 with INT 21h. But the string must end with ‘$’ character. You must 
also load the effective address of the string in register DX. 
 

4. To display a string on a new line, you need to put CR after your string and LF and '$' 
at the end. CR stands for Carriage Return (or Enter key) and LF stands for Line Feed. 
You can also put 0Dh or 13 instead of CR (or cr), and 0Ah or 10 instead of LF (or lf). 
 

 



 43

5.3 Lab Work:  
The following program clears the screen and positions the cursor in the middle of the screen. Two 
memory locations ‘row’ and ‘col’ are used to keep track of the cursor position. 
 
TITLE  "Program to move the cursor on the screen" 
.MODEL SMALL   ; this defines the memory model   
.STACK 100    ; define a stack segment of 100 bytes 
.DATA    ; this is the data segment 
 

row  DB 12  ; define initial row number 
col DB 39  ; define initial column number 

 
.CODE 
  
MAIN PROC 

MOV AX,@DATA  ; get the address of the data segment 
MOV DS, AX   ; and store it in register DS  

CALL CLEARSCREEN ; clear the screen 

CALL SETCURSOR  ; set the cursor position 

MOV AX, 4C00H  ; exit to DOS 
INT 21H 

 
MAIN ENDP 

CLEARSCREEN PROC   
 
  MOV AH, 00   ; set video mode 
 MOV AL, 03   ; for text 80 x 25 
  INT 10H   ; call the DOS interrupt 

RET    ; return to main procedure 
 
CLEARSCREEN ENDP 
 
SETCURSOR PROC 
 

MOV DH, row  ; load row number 
MOV DL, col   ; load column number 
MOV AH, 2    ; use DOS interrupt service for positioning screen  
MOV BH, 0   ; video page (usually 0)   
INT 10H   ; call the DOS interrupt 
RET    ; return to main procedure 

 
SETCURSOR ENDP 
 
END MAIN 



 44

Note that the SETCURSOR procedure shown above gets its row and column positions directly 
from the memory variables ‘row’ and ‘col’. 

Modify the MAIN procedure in the above program to read an arrow key value from the 
keyboard using the DOS single character input function INT 21h, AH=7 which waits for 
a character and does not echo the character to the screen. Depending on which arrow key 
is pressed, the program must move the cursor accordingly, as indicated below: 
 
Key pressed ASCII value read from 

keyboard 
Movement 

↑   (Up) 48h Move up (decrement row) 
→ (Right) 4Dh Move right (increment col) 
↓   (Down) 50h Move down (increment row) 
← (Left) 4Bh Move left (decrement col) 
 
The following can be defined in the data segment: 

LEFT     EQU     4Bh 
RIGHT    EQU     4Dh 
UP        EQU     48h 
DOWN     EQU     50h 

 
The following table shows some 80 x 25 screen positions. 
 

Position               Decimal  Value Hexadecimal 
Upper left corner (0,0) (0,0) 
Lower left corner (0,24) (0,18) 
Upper right corner (79,0) (4F,0) 
Lower right corner (79,24) (4F,18) 
Center screen (39,12) (27,C) 

 

The program must wrap the cursor correctly around to the next boundary, for e.g., if the 
cursor moves off the right edge it should appear at the left edge and vice-versa. Similarly, 
if the cursor moves off the bottom edge it should appear at the top edge and vice-versa. 

The program must continuously check for a key press (using the ASCII values given 
above) inside a loop, and move the cursor to a new position only when an arrow key is 
pressed. The program must exit the loop and return to DOS when the ENTER key (ASCII 
value 0Dh) is pressed. 

 

 

 

 



 45

Experiment #6 
 

Using BIOS Services and DOS functions 
Part 1: Pixel-based Graphics 

  
 

6.0 Objectives:   

The objective of this experiment is to introduce BIOS and DOS interrupt service routines 

to write assembly language programs for pixel-based graphics. 

In this experiment, you will use BIOS and DOS services to write programs that can do 

the following: 

• Set graphics video mode 

• Write a pixel on the screen 

• Draw a line on the screen 

• Draw a rectangle on the screen 

6.1 Introduction:  

In text mode, the cursor is always displayed on the screen and the resolution is indicated 

as number of characters per line and number of lines per screen. 

In graphics mode, the cursor will not appear on the screen and the resolution is specified 

as number of pixels per line and number of lines per screen. Text can be used as usual in 

graphics mode. 

6.1.1 BIOS Video I/O Services 
The BIOS function requests in this category are used to control graphics on the PC’s 

display screen. The function request is chosen by setting the AH register to the 

appropriate value and issuing and interrupt 10H. 

 

Set Video Mode (INT 10H, Function 00H): 

Selects the video mode and clears the screen automatically.  

Input:  

AH = 00H 

AL = mode number to indicate the video mode desired 

Returns: Nothing 
 



 46

Example: 

MOV AH, 00 

MOV AL, 03H   ; text video mode 

INT 10H  
 

Table: Possible video mode settings.    

 
 



 47

Scroll the Screen or a Window Up (INT 10H, Function 06H): 

Input: 

    AH = 6 

    AL = number of lines to scroll (0 => whole screen) 

    BH = attribute for blank lines 

    CH, CL = row, column for upper left corner 

    DH, DL = row, column for lower right window 

Returns: Nothing 

Scrolling the screen up one line means to move each display line UP one row and insert a blank 

line at the bottom of the screen. The previous top row disappears from the screen. 

The whole screen or any rectangular area (window) may be scrolled. AL contains the number of 

lines to scroll. If AL = 0, all the lines are scrolled and this clears the screen or window.  

Example: Clear the screen to black for the 80x25 display. 

MOV AH, 6        ; scroll up function 

XOR AL, AL      ; clear entire screen 

XOR CX, CX     ; upper left corner is (0,0) 

MOV DX, 184FH   ; lower right corner is (4Fh, 18H) 

MOV BH, 7        ; normal video attribute 

INT 10H          ; clear screen 

Scroll the Screen/Window down (INT 10H, Function 07H): 

Input: 

    AH = 7 

    AL = number of lines to scroll (0 => whole screen) 

    BH = attribute for blank lines 

    CH, CL = row, column for upper left corner  

    DH, DL = row, column for lower right corner 

Returns: Nothing 

Same as function 6, but lines are scrolled down instead of up. 



 48

16-Color Display 

Attribute Byte:  

Bit# 7 6 5 4 3 2 1 0
Attr BL R G B IN R G B

Attributes: 

Bit #     Attribute 

0-2       character color (foreground color) 
3         intensity  
4-6       background color 
7         blinking 

E.g., to display a red character on a blue background, the attribute byte would be: 

0001 0100 = 14h 

If the attribute byte is: 0011 0101 = 35h 

Uses blue + green (cyan) in the background and red + blue (magenta) in the foreground, so the 

character displayed would be magenta on a cyan background. 

If the intensity bit (bit 3) is 1, the foreground color is lightened (brightened). If the blinking bit 

(bit 7) is 1, the character turns on and off. 

Write Pixel (INT 10h Function 0Ch): 

Draws the smallest unit of graphics display, also called a dot, a point or a pixel (picture element) 

on the display at specified graphics coordinates. This function operates only in graphics modes. 

Input 

    AH = 0Ch 

    AL = pixel value  

(if bit 7 is 1, the new pixel color bits will be EX-ORed with the color bits of the current pixel. 

    BH = video display page 

    CX = column (graphics x coordinate) 

    DX = row (graphics y coordinate) 

Returns: Nothing 



 49

6.2 Pre-lab: 
1. Drawing a Pixel 
The following program draws a pixel on the screen at location (240, 320) using the “write pixel” 
function (AH=0Ch) of INT 10h. Run the program after assembling and linking it. 

TITLE  "Program to enter characters from keyboard" 
.MODEL SMALL   ; this defines the memory model   
.STACK 100    ; define a stack segment of 100 bytes 
.DATA    ; this is the data segment 
.CODE     ; this is the code segment 
 

MOV AX,@DATA  ; get the address of the data segment 
MOV DS, AX   ; and store it in DS register 

 

MOV AH, 00h  ; set video mode  
MOV AL, 12h   ; graphics 640x480 
INT 10h 
     
; draw a green color pixel at location (240, 320) 
MOV AH, 0Ch  ; Function 0Ch: Write pixel dot 
MOV AL, 02   ; specify green color 
MOV CX, 320   ; column 320 
MOV DX, 240    ; row 240 
MOV BH, 0   ; page 0 
INT 10h 
 
MOV AH, 07h  ; wait for key press to exit program 
INT 21h 
 
MOV AX, 4C00H  ; Exit to DOS function 
INT 21H 

 
END     ; end of the program 



 50

2. Drawing a horizontal line 
The following program draws a horizontal line on the screen from location (240, 170) to (240, 
470) by writing pixels on the screen using function (AH=0Ch) of INT 10h. Run the program after 
assembling and linking it. 

TITLE  "Program to enter characters from keyboard" 
.MODEL SMALL   ; this defines the memory model   
.STACK 100    ; define a stack segment of 100 bytes 
.DATA    ; this is the data segment 
.CODE     ; this is the code segment 
 

MOV AX,@DATA  ; get the address of the data segment 
MOV DS, AX   ; and store it in DS register 

 

MOV AH, 00h  ; set video mode  
MOV AL, 12h   ; graphics 640x480 
INT 10h 
     
; draw a green color line from (240, 170) to (240, 470) 
MOV CX, 170   ; start from row 170 
MOV DX, 240  ; and column 240 
MOV AX, 0C02h  ; AH=0Ch and AL = pixel color (green) 

BACK: INT 10h   ; draw pixel 
INC CX   ; go to next column 
CMP CX, 470   ; check if column=470  
JB BACK   ; if not reached column=470, then continue 
 
MOV AH, 07h  ; wait for key press to exit program 
INT 21h 
 
MOV AX, 4C00H  ; Exit to DOS function 
INT 21H 

 
END     ; end of the program 

 
3. Drawing a vertical line 
Using the procedure followed in part 2 (drawing a horizontal line), draw a vertical line on the 
screen from location (90, 320) to (390, 320). Run the program after assembling and linking it. 

4. Drawing a plus (+) sign in the middle of the screen 
Combine the programs written for parts 2 and 3 above to draw a plus sign. All you have to do is 
to insert the code for drawing the vertical line [from location (90, 320) to (390, 320)] right after 
the code for drawing the horizontal line [from location (240, 170) to (240, 470)]. Run the 
program after assembling and linking it. 

 



 51

6.3 Lab Work:  
Draw the following figure on the screen using function 0Ch of INT 10h. Assemble, link, and run 
it and show it to your lab instructor for credit. 

 

(90,170)

(390,470)

Screen size 640x480
(480 rows, 640 columns)  



 52

Experiment #7 
 

Introduction to Flight86 Microprocessor Trainer and Application Board 
  

 
7.0 Objectives:   

The objective of this experiment is to introduce the Flight86 Microprocessor training kit 
and application board. 

In this experiment, you will do the following: 

• Study the hardware specifications of the training and application boards 

• Learn monitor commands to communicate with the Flight86 trainer 

• Assemble, download, and test a program on the trainer board 

 
7.1 Equipment and Software 

• Flight86 Trainer and Application Board 

• PC with Flight86 Monitor program 

 
7.2 Introduction:  

The Flight86 trainer system together with an application board can be used to perform 
interesting experiments using the 8086 on-board microprocessor. The Flight86 trainer 
system can be connected to a PC (through its serial port) which allows code to be 
assembled and debugged in a supportive software environment before being downloaded 
into the RAM on the board. The block diagram below shows such a setup: 

PC

Flight86
Microprocessor
Trainer System

RS 232 link

8 or 16-bit
Peripheral 1

8 or 16-bit
Peripheral 2

Port 1

Port 2

 

Once the code is downloaded, it can be executed and tested in a system which is 
accessible to the user. Data may be modified on the board and the change in results can 
be viewed on the PC display. A monitor program stored on the board in an EEPROM is 
the software that allows communication between the PC and the trainer system. The 
monitor program allows code to be downloaded from an Intel Hex file into the controller 
RAM. The monitor code also enables development activity such as register and memory 
management and program execution to take place. 
 



 53

The basic components of the trainer system are described below: 

Microprocessor 

CPU 8086 Operating in Min. mode 

CGD 8284A 

Clock Generator Device 

Oscillator source: 14.7456 MHz; CPU Clock, CLK: 4.9152 MHz 

Peripheral clock, PCLK: 2.4576 MHZ 

Memory 

EPROM (2) 

2764 
16k byte (expandable to 64k byte) 

RAM (2) 6264 16k byte (expandable to 64k byte) 

On-board Peripherals 

PPI (2) 8255A 
Programmable Peripheral Interface providing four 8-bit parallel ports 

with handshake lines 

PIT 8253 
Programmable Interval Timer providing three 16-bit counter/timer 

channels 

USART 

8251A 
Universal Synchronous/Asynchronous Receiver/Transmitter 

PIC 8259A 
Programmable Interrupt Controller providing 8 levels of priority for 

above devices 

 

Register Address Register Address 
8255 PPI (U10) connected to P1 8255 PPI (U9) connected to P2 

Port A 00h Port A 01h 
Port B 02h Port B 03h 
Port C 04h Port C 05h 
Control 06h Control 07h 

8253 PIT (U8) 8259 PIC (U11) 
Count 0 08h ICW1, OCW2-3 10h 
Count 0 0Ah ICW2-4, OCW1 12h 
Count 0 0Ch 8251 USART U7 

Mode Word 0Eh Data 18h 
Table: I/O Map Status/Control 1Ah 



 54

Layout of the Flight86 Trainer system: 

8086

8255 PPI

8253 PIT

8255 PPI

8259 PIC

8251 USART

6264 RAM 6264 RAM

2764 ROM 2764 ROM

8284 CLK

P
2

P
1

 



 55

7.2.1 Application Board 
The application board is useful for microprocessor interfacing from simple switch and 
lamp input/output through to more complex closed-loop and open-loop control systems.  
This board includes the following components: 
 

• Eight digital switches  
• Temperature sensor 
• Optical speed/position sensor 
• Light sensor 
• Potentiometer 
• External analogue input 
• DC motor 
• Eight LED’s 
• Bargraph 
• Heater 
• Analogue output 
 

 
Layout of the Application Board 

 

 



 56

7.2.2 Host (PC) to Controller Board (Flight 86 Trainer) Communication 

To establish Host to Controller (Trainer) Board Communication follow this set-up 
procedure: 

1. Turn on Host PC. Ensure you have the DOS prompt showing C:\FLIGHT86> 
2. Turn OFF Flight86 board power supply. 
3. Connect the serial lead (cable) between the serial port (COM1) on the PC and 

socket P3 on the Flight86 board. 
4. Turn ON Flight86 board DC power supply. [Note: the board indicates that power 

is actually applied by illuminating the green LED, D1. 
5. Type flight86 at the DOS prompt C:\FLIGHT86>, i.e., C:\FLIGHT86>flight86 
6. After a few seconds you should see the following messages: 

FLIGHT86 Controller Board. Host Program Version 2.0. 
Press ? and Enter for help – Waiting for controller board response … 
ROM found at F000:C000 to F000:FFFF Flight Monitor ROM version 2.0 
RAM found at 0000:0000 to 0000:FFFF 
- 

7. The “-“ is the host prompt. 
8. You have control over the controller board once this prompt is displayed. 

If you do not see the prompt, you do not have communications with the controller board. 

If the above message stopped at “Waiting for controller board response …” turn the 
Controller board power supply OFF, wait a few seconds, and turn it ON again. You 
should then see the “Controller Reset” message followed by the memory test messages. 

7.2.3 Host Commands 

The command line is executed immediately after the Enter or Return key is pressed. 
Before this it may be edited using the DEL key. 

All data must be specified in hexadecimal, although leading zeros may be omitted. 
Spaces are ignored for flexible entry, although the first character of a line must be a valid 
command letter. 

The command line syntax uses squared brackets, [ ], to indicate parameter options. The 
pipe symbol, |, is used to indicate a choice of parameters, one of which must be used. 



 57

If an invalid parameter is entered, the full command syntax and help line is displayed to 
assist. 

Command Key Parameters Description 

Escape Esc  Press the Escape button to stop 
the current command 

Reset X  Resets the training board 
Help ? [command letter] Help on the command 

Quit Q  
Terminates running of the 
board software and returns 
control to the operating system 

Register R [register] Allows the user to display or 
change the content of a register 

Memory M [W][segment:] address1 
[address2] 

Allows the user to display or 
edit one or more memory 
locations 

Assembly A [[segment:] address] 
Allows the user to write 8086 
assembly code directly into the 
training board 

Disassemble Z [[V] [segment:] address1 
[address2]] 

Reverse assembles the contents 
of memory 

Go G [[segment:] address] 
Allows the user to execute 
code that has been downloaded 
into RAM 

Breakpoint B ? | R | S [segment:] address 
Allows the user to 
Display/Clear/Set break points 
inside his code 

Single step S [R][[segment:] address] Allows the user to step through 
code one instruction at a time 

Download : [drive:\path\] filename 
Loads an Extended Intel Hex 
file from disk into the memory 
of the training board 

Upload U [drive:\path\] file [seg:] add1 
add2 

Allows a block of memory to 
be saved to a disk file in 
Extended Intel Hex format 

 
The Assemble command (A) is used to enter 8086 assembly code commands, and these 
will be assembled and the bytes stored directly into memory. There is a short delay as the 
bytes of code are sent to the board.  
 
Note: The origin address for user RAM on the FLIGHT86 system is 0050:0100. 

The Disassemble command (Z) allows the contents of memory to be reverse assembled 
to 8086 mnemonic codes. If the V option is specified, then the ASCII codes for the 
disassembled bytes are displayed alongside each line. For example, 

- Z V 100 130 
displays the disassembled code between the addresses specified with ASCII codes 



 58

The Download command (D) loads an Extended Intel Hex file from disk and puts it into 
the appropriate memory locations. The original file may have been generated using an 
assembler, compiler or the Upload command. For example,  

- : C:\FLIGHT86\program.hex 
downloads file program.hex from drive C subdirectory FLIGHT86 

The Upload command (U) allows a block of memory to be saved to a disk file. The data 
is saved in the Extended Intel Hex format. If the file extension is not specified, then it 
defaults ti .HX. For example, 

- U C:\FLIGHT86\program.hex 0050:0100 150 
saves contents of block 0050:0100 to 0050:0150 to file program.hex on drive C 
subdirectory FLIGHT86 

Note: This command is useful for saving your program to be shown to your lab instructor 
later while you continue to work on another program. So, the next time you don’t have to 
assemble the program again but simply download it using the Download command “:”. 

7.2.4 I/O Interfacing using 8255 PPI 

The FLIGHT86 controller board has two 8255 PPI chips that provide ports for I/O 
interfacing. To be able to use the 8255 for I/O interfacing, a control byte has to be written 
to the Control register of the 8255 so that any of the ports A, B or C can be set up as input 
or output ports. The format of the Control byte is as shown below: 

b7 b6 b5 b4 b3 b2 b1 b0 

1 Mode bits for port 
A, and port CUpper 

Port A Port CUpper
Mode bit for port 
B, and port CLower

Port B Port CLower 

 

Port bit:  
0 → output 
1 → input 

 

* - Only port A can be configured for Mode 2 whereas the other ports (B, and C) can be 
used either for input or output only. 

Example: 

b7 b6 b5 b4 b3 b2 b1 b0 Configuration 
1 0 0 0 1 0 0 1 Mode 0; ports A and B: output; port C: 

input 
1 0 0 0 0 0 1 0 Mode 0; ports A and C: output; port B: 

input  
 

b6 b5 Mode b2 Mode 
0 0 Mode 0 - Simple I/O 0 Mode 0: Simple I/O 
0 1 Mode 1 - Strobed I/O 1 Mode 1: Strobed I/O 
1 x Mode 2*- Bidirectional I/O   



 59

The Flight86 controller board communicates with the Application board using the 8255 
PPI. The addresses of these ports are given below:  
 

Register Address Register Address 
8255 PPI (U10) connected to P1 8255 PPI (U9) connected to P2 

Port A 00h Port A 01h 
Port B 02h Port B 03h 
Port C 04h Port C 05h 
Control 06h Control 07h 

Note that the Flight86 controller board has two 8255 devices one connected to port P1 
and the other to port P2 through which it can connect to the Application board. The 
addresses of the 8255 registers depend on which port is used. 

Output Port:  

The Controller board output port connects to Port B on the Applications Board, and the 
state of the 8 lines will always be displayed on the 8 colored LED’s. 

By means of on board mode switches, this port can be used to control the motor (forward 
and reverse) and/or the heater. 

When not in use for these functions, the output port can be used to drive the Digital to 
Analogue Converter (D/A). 

Input Port:  

The processor input port connects to Port A on the Applications Board, and by selection 
via mode switches can be used to read the 8 bit DIL switch, or the output of the Analogue 
to Digital Converter (A/D), or the output of the D/A comparator, and/or the output of the 
speed sensing infra-red detector. 



 60

7.3 Pre-lab: 

1. Read all the above sections of this experiment. 
2. Read the topic on 8255 PPI from your text book. 
3. Read about the IN and OUT instructions from your text book. 

7.4 Lab Work: 

Part 1: Familiarization with the Flight86 trainer system 

The lab instructor will give a demonstration and introduce you to the Flight86 Controller 
board, the monitor program, and the Application board. 

Part 2: Initialization 

Before the Flight86 Controller board can communicate with the Application board, the 
8255 on the Controller board must be initialized. Telling the 8255 how to perform is 
known as INITIALIZATION, so the first program we run after power up or reset, must 
be one which initializes the 8255.  

MOV AL, 99  ; set up Port A IN, Port B OUT, Port C IN 
OUT 07, AL  ; and output this word  to control Port 
MOV AL,0  ; data zero 
OUT 03,AL  ; output to Port B to ensure all LEDs off 
INT 5   ; Return to Monitor program and prompt 

Note: This program without the last line INT 5 will be required at the start of every 
program you write for the Flight86 system to ensure the 8255 is set up before doing any 
thing else. 

Procedure 

1. Start up the Flight86 board as described in section 1.2 Host (PC) to Controller 
Board Communication (Flight86 Trainer) obtaining the sign on message, 
followed by the ‘-‘ prompt. (Ask your lab instructor to show you how). 

2. Make sure the ribbon cable connects port P2 on the Flight86 board to the port on 
the Application board. 

3. Turn ON the Application board power supply. 
4. Now enter A 0050:0100 at the ‘-‘ prompt. This starts the line assembler at the 

desired address. The monitor program responds by echoing the address 
0050:0100. Now enter the program as shown above. Press the Enter or Return key 
after each line of code. The monitor program goes to the next address 
automatically. The screen will look like: 

 



 61

 

0050:0100 MOV AL, 99
0050:0102 OUT 07, AL 
0050:0104 MOV AL,0 
0050:0106 OUT 03,AL 
0050:0108 INT 5 
0050:010A 

5. Press the ESC key at the last address 0050:010A to return to the ‘-‘ prompt. 
6. Enter Z 0050:0100 at the prompt. The code just entered will be listed on the 

screen and can be checked for accuracy. 
7. Now enter G 0050:0100 at the prompt and press the Enter key. The program will 

now run, initialize the 8255, and return to the prompt. Any LEDs that were lit on 
the application board will now turn off. 

8. Enter U C:\FLIGHT86\init.hex 0050:0100 10A at the prompt to upload the 
above program from the Controller board memory to a file init.hex on drive C 
subdirectory FLIGHT86. 

9. Now press the RESET button on the Flight86 Controller board. 
10. Enter the following command at the prompt to download init.hex to the Controller 

board memory. 

: C:\FLIGHT86\init.hex 

11. Now enter G 0050:0100 at the prompt to run the program again. 

Note that you don’t have to enter the whole program again when the controller board 
is reset for some reason, if you have saved it to a file using the Upload command. 
This is particularly useful when writing large programs. 



 62

Part 3: SWITCHES and LEDs 

The Application board has an 8 bit DIL switch and 8 colored LEDs. For example, if 
switch 2 is set, then LED 2 (the green LED on the right side) will turn ON, and so on. 

Write a program that will read the state of the 8 bit DIL switch and output data to the 8 
colored LEDs. If a switch is ON, then an LED in the corresponding position will turn 
ON.  

The program logic is illustrated in the following flowchart: 

Initialize

Read Switches

Output to
LEDs

The program continuously
loops, reading the switches
and outputting their value to
the LEDs, every change of
switch setting immediately
being reflected by a change
in the LED pattern

 

The switches are connected to Port A (address 01), and the LEDs are connected to Port B 
(address 03) when mode switch SW2A is pushed up to SWITCH position. All the other 
mode switches must remain in the OFF position. 

Procedure 

1. Follow steps 1, 2, and 3 of the procedure of Part 1 above. 
2. Include the initialization code (without the last line) at the beginning of your 

program. 
3. Assemble your program at 0050:0100. 
4. Disassemble your program using the Z command to check for accuracy. 
5. Run your program using the G command. 
6. Change the settings of the DIL switch and test your program. 
7. Check your program again if it does not work. 
8. If your program works correctly, then repeat steps 8, 9, 10, and 11 of the 

procedure of Part 1 above, this time name the file as SW_to_LEDS.hex. The end 
address to be specified with the Upload command will be the address after the last 
instruction of your program. 

9. Alter the program above so that when a switch is set, the respective LED goes off. 
Then, repeat steps 3 through 8 above. 



 63

Experiment #8 
 

Flight86 Application I – Traffic Lights 
  

 
8.0 Objectives:   

The objective of this experiment is to simulate a traffic lights system. 

In this experiment, you will do the following: 

• Create software time delays 

• Write programs to simulate a traffic lights system 

• Assemble, download, and test your program on the trainer board 

 
8.1 Equipment and Software 

• Flight86 Trainer and Application Boards 

• PC with Flight86 Monitor program 

• Assembler and conversion utilities (exe2bin, bin2hex) 

 
8.2 Introduction:  

It is often necessary to control how long certain actions last, this can be achieved using 
software delays, or more accurately by the use of a timer. 

In this experiment we will simulate a traffic lights system that requires use of software 
time delay. 

8.2.1 Creating Software Delays 

In the various states of the traffic lights sequence, lights have to be ON or OFF for a 
clearly defined time in seconds, so our program must contain a means of measuring one 
second. The easiest way, which does not need any further hardware devices, is a software 
delay. 

If we create a program that loops around itself, and does this for a fixed number of times, 
for a given processor, running at a given clock rate, this process will always take the 
same time. All we have to do is write such a multiple loop so that it takes one second to 
complete. This process is illustrated in the flowchart below: 

Load register with
a large number Decrement number

Is
number

= 0 ?

No

Yes Exit
loop

 



 64

Now the question is: how do we calculate the ‘large number’ to be loaded in the register 
for the loop? 

To calculate a specific time delay we need to calculate the number of times the program 
will loop around itself. To do this, we need to know how many clock cycles are required 
to carry out a particular instruction(s), and the processor clock rate which ultimately 
decides how long an instruction takes to execute. 

Let’s examine the code below. This code can be used to produce a certain delay value. 
We will try to find the value of N such that this code produces a delay of approximately 
100ms.  

DELAY: MOV CX, N ; Load CX with a fixed value 
DEL1: DEC CX ; decrement CX 
 JNZ DEL1 ; and loop if not zero 
 RET ; when CX=0, then exit 

We can see in the code above that instructions which get repeatedly executed (inside the 
loop) are DEC CX and JNZ DEL1. The number of clock cycles required to execute 
these two instructions once, are: 

DEC CX 2 clock cycles 
JNZ DEL1 16 clock cycles 
Total :            18 clock cycles 

 
Note: If we also consider the time required to execute the instructions outside the loop, 
i.e., the first and the last instructions above, then we can get a more accurate time delay. 
But we will ignore this, since these instructions are executed only once. 
 

Number of times this loop is executed is: N 
CPU clock rate for the Flight86 Trainer system is: CLK = 4.9152 MHz  
Time period for one clock cycle, TCLK = 1/(4.9152 x 106) = 203.5ns 
(Total clock cycles) x (Number of times loop is executed) x TCLK = 100 ms 
18 x N x 203.5ns = 100 ms; → Solving for N, we get N = 27300 = 6AA4H 

Therefore, if the above loop is executed N = 27300 times we get a delay of 100ms 
approximately. Now, this loop can be used to produce a delay of 1 second if it is 
executed 10 times. That means, there will be two loops – one that produces 100 ms delay, 
and the other that executes this loop 10 times to produce 10 x 100ms = 1 second. 



 65

8.3 Exercise: Simulating a Traffic lights system 

The LED’s on the application board are arranged in two groups of 4 -  Red, Amber, 
Green, and a Yellow. Using these two sets of four lights we can easily simulate the traffic 
lights at a busy cross road, one set representing the main road, the other set the side road. 

Red1 Amber1 Green1 Yellow1 Red2 Amber2 Green2 Yellow2 
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

The traffic lights system must be simulated according to the following sequence which 
must be repeated continuously (the Yellow LED’s are not used): 

Main Road Side Road  
Signal Duration Signal Duration Bit value 
Red 1 15 sec Green 2 15 sec 1 0 0 0 0 0 1 0 
Red 1 03 sec Amber 2 03 sec         
Red & Amber 1 03 sec Red 2 03 sec         
Green 1 25 sec Red 2 25 sec         
Amber 1 03 sec Red 2 03 sec         
Red 1 03 sec Red & Amber 

2 
03 sec         

Table 1: Sequence of lights 

The bit value represents the output pattern to turn on the required LED’s. 

An easy way to implement the above sequence of lights repetitively is to set all the data 
up in a table, and advance through the data step by step, until the end of the table is 
reached, when it can be repeated. The table can contain both the required LED pattern, 
and the time that pattern is to be manipulated. For the above case, the table would be: 

Data, time
82h,150 
 
 
 
 
 

 

LED pattern 82h (10000010), maintained  
for 150 x 100ms (= 15 sec).  

The delay is implemented in multiples of 100 ms. 

Table 2: Data for traffic lights sequence 



 66

8.4 Review 

1. Review the hardware specifications of the Flight86 system described in the last 

experiment.  

2. Read about instruction clock cycles from your text book. 

8.5 Pre-lab: 

1. Complete the bit-value output pattern in Table 1. 

2. Complete Table 2 for the corresponding bit-value pattern in Table 1. 

Table 2 can be implemented in assembly language using the “DB” (define byte) 
assembler directive, as shown below: 

TABLE DB 82h, 150  ; RED1  GREEN2  15 sec 
  DB   ,  ; RED1  AMBER2  03 sec 
  DB  ,  ; RED/AMBER1 RED2  03 sec 
  DB  ,  ; GREEN1 RED2    25 sec 
  DB  ,  ; AMBER1 RED2  03 sec 
  DB  ,  ; RED1 RED/AMBER2  03 sec 

3. Complete the remaining entries of this table and place it after the last instruction 

of your program that you will write for the Lab Work. 

4. Write a program to produce a delay of 5 seconds using the code shown below 

which produces a delay of 100ms. 

DELAY: MOV CX, 27300 ; Load CX with a fixed value 
DEL1: DEC CX ; decrement CX 
 JNZ DEL1 ; and loop if not zero 
 RET ; when CX=0, then exit 

 



 67

8.6 Lab Work: 

1. Write your program according to the flow chart shown below.  

Initialize

Load offset of data 
table

Load LED bit 
pattern from table

Load delay value 
from table

Output bit pattern 
to LED’s

Implement delay

Increment table 
pointer

Load number of 
entries (in table)

Initialize the 8255

If the table has 6 
entries, then load 
6 into a register

Program Logic
 

 



 68

2. Include the following initialization code at the beginning of your program. (See 

previous experiment). 

INIT: 
 MOV AL, 99  ; set up Port A & Port C IN, Port B OUT   
 OUT 07, AL  ; and output this word  to control Port 
 MOV AL,0  ; data zero 
 OUT 03,AL  ; output to Port B to ensure all LED’s off 

3. Use an editor to write to your program. Name your file as traffic.asm  

4. Assemble and link your program using the TASM assembler to produce 

traffic.exe. 

5. Convert the traffic.exe file to binary format using the exe2bin.exe program by 

typing exe2bin traffic.exe at the DOS prompt. 

6. Convert the traffic.bin file to traffic.hex using the bin2hex.exe program by typing 

bin2hex traffic.bin at the DOS prompt. 

7. Start the Flight86 monitor program. 

8. Download traffic.hex to the Flight86 controller board by typing at the ‘-‘ prompt 

: C:\FLIGHT86\traffic.hex 

9. Before you run your program make sure the mode switches are in the correct 

position. 

Switch SW2A – Switch position
All other switches - OFF 

10. Now enter G 0050:0100 at the ‘-‘ prompt to run the program. 

11. Check the sequence of lights and the time duration generated by your program 

and make sure it is working correctly. 

 



 69

Experiment #9 
 

Flight86 Application II – Motor Control 
  

 
9.0 Objectives:   

The objective of this experiment is to control the operation and speed of a DC motor. 

In this experiment, you will do the following: 

• Write a program to control the DC motor operation 

• Write a program to vary the speed of the DC motor with a potentiometer 

• Assemble, download, and test your programs on the trainer board 

 
9.1 Equipment and Software 

• Flight86 Trainer and Application Boards 

• PC with Flight86 Monitor program 

• Assembler and conversion utilities (exe2bin, bin2hex) 

 

9.2 Introduction:  

There is a small DC motor on the Application board. This motor with 3 bladed-propeller 
is limited to approx. 8000 RPM by the two current limiting resistors connecting it to the 
board. The polarity of the voltage applied to the motor and hence forward and reverse is 
selected by a relay. The motor is driven from the unregulated supply obtained from the 
mains adaptor (approx. 9V). 

DC Motor

D2 D1
Infra-red sensor (and detector)

Propeller

 



 70

As the motor rotates, the propeller blades pass between D1, an infra-red source, and D2 
an infra-red detector, the change in current through the detector provides a signal 3 times 
per revolution back to Port A bit 4. However, for this to function, SW4A must be set to 
‘SPEED’. 

9.2.1 Motor Operation 

Motor ON forward/reverse selection is by output bits 6 and 7 on Port B, their value is 
decoded by U4 (74LS139 – 2 x 4 decoder). 

Port B  
Bit 7 Bit 6 Motor Operation

0 0 Stop 
0 1 Forward motion 
1 0 Reverse motion 
1 1 Stop 

Table 1: Motor Operation 

To decode and drive any output of U4, first U4 must be enabled by placing SW2B in 
‘MOTOR’ position. 

In this experiment, we will write a program to control the operation of the Motor with 
two DIL switches available on the Applications Board. 

9.2.2 Motor Speed Control 

The speed controller works by varying the average voltage sent to the motor. It could do 
this by simply adjusting the voltage sent to the motor, but this is quite inefficient to do. A 
better way is to switch the motor's supply on and off very quickly. If the switching is fast 
enough, the motor doesn't notice it, it only notices the average effect.  

Now imagine a light bulb with a switch. When you close the switch, the bulb goes on and 
is at full brightness, say 100 Watts. When you open the switch it goes off (0 Watts). Now 
if you close the switch for a fraction of a second, and then open it for the same amount of 
time, the filament won't have time to cool down and heat up, and you will just get an 
average glow of 50 Watts. This is how lamp dimmers work, and the same principle is 
used by speed controllers to drive a motor.  

The speed of the Motor can be varied by turning the Motor ON and OFF very quickly.

If the supply voltage is switched fast enough, it won’t have time to change speed much, 
and the speed will be quite steady. This is the principle of switch mode speed control. 
This principle of controlling the speed of the motor by turning the supply on and off very 
quickly is called Pulse Width Modulation (PWM). 

As the amount of time that the voltage is on increases compared with the amount of 
time that it is off, the average speed of the motor increases. 



 71

9.2.3 Speed Control with a Potentiometer 

The Potentiometer is an analogue input which provides a linear voltage between 0 and 
2.55V. We will convert this voltage to a digital value with the help of the Analog-to-
Digital Converter (ADC) provided on the board. The specifications of this ADC are given 
below: 

Clock rate 400 KHz 
Conversion time 180 us 
Input 0.00 V for 00 Hex output 
Input 2.50 V for 80 Hex output 
Input 5.00 V for FF Hex output

This is an 8-bit ADC, free running at a clock rate of approx. 400 KHz. As the ADC is 
free running it is completely asynchronous with any ‘read’ from the microprocessor 
training board (Controller board), which means if read just as the output of the ADC is 
being updated, false readings could be obtained. This can be overcome by reading twice 
or more times, only accepting a value when it is unchanged over two consecutive 
readings. For most microprocessors, this should provide no problem in taking two 
readings in between conversions of the ADC. 

To obtain a reliable reading, take reading two or more times, only accepting a value 
when it is unchanged over two consecutive readings. 

In this experiment, we will control the speed of the Motor with a Potentiometer provided 
on the Applications Board. However, we will not use the Potentiometer to vary the 
voltage supplied to the Motor but to determine how long the motor should be turned OFF. 
The Potentiometer value will be converted to a digital value which will then be used to 
index into a table. This table will contain delay values for the duration for which the 
running motor will be turned OFF.  

The delay values will be stored in a decreasing order so that higher Potentiometer 
voltage corresponds to lower delay value, and vice-versa. 

As we know, the speed of the Motor can be varied by turning the Motor ON and OFF 
very quickly, we will use ON/OFF duration in multiples of 1ms (milliseconds). This will 
ensure that the speed of the Motor will be quite steady. 

To make things simple, the ‘ON’ duration of the Motor will be kept constant. Only the 
‘OFF’ duration will change depending on the Potentiometer value. 

As the Potentiometer is turned to produce increasing voltage (up to 2.55V), the ‘OFF’ 
delay value selected from the table will be smaller, and thus, the speed of the Motor will 
be increased. Similarly, as the Potentiometer is turned to produce decreasing voltage 
(down to 0V), the ‘OFF’ delay value selected from the table will be larger, and thus, the 
speed of the Motor will be decreased. 



 72

The ADC will produce values in the range 00H to 80H (0 to approx. 130) corresponding 
to Potentiometer values (0 to 2.55V). This range of ADC values (0 to approx. 130) 
requires a table of 130 elements. This is quite large and not practical for a small 
application like this. To make matters easy, we will scale down the ADC range. If we 
divide the ADC value by 13, our effective range is scaled down to (0 to 10). 

The delay must be implemented in multiples of 1ms. The following code can be used to 
implement a delay of approx. 1ms. 

DELAY: MOV CX, 270 ; Load CX with a fixed value 
DEL1: DEC CX ; decrement CX 
 JNZ DEL1 ; and loop if not zero 
 RET ; when CX=0, then exit 

 



 73

9.3 Pre-lab 

1. Review the hardware specifications of the Flight86 system described in the 
experiment – Introduction to Flight86 Trainer and Application Board. 

2. Read all the above sections of this experiment. 

3. Write a subroutine to read the ADC value (which provides the Potentiometer 
value converted to a digital value) on Port A, when Switch SW2B is in Motor 
position and Switch SW3 is in VOLTS position. This subroutine will be used in 
Part 2 of the Lab Work of this experiment for Motor Speed Control.  

To obtain a reliable reading, you program must take reading two or more times, only 
accepting a value when it is unchanged over two consecutive readings. 

The logic for the read operation is illustrated in the flowchart below: 

 

 

 



 74

9.4 Lab Work – Part 1: Motor Operation 

Write a program to control the operation of the DC Motor. The operation of the motor 
must be controlled by bits 7 and 6 of the DIL switches (according to Table 1 shown 
above). The logic of the program is illustrated by the flowchart shown below: 

Initialize

Read state of DIL 
switches on port A

Output value to 
Motor on Port B

Mask Off 
bits 5 to 0

Initialize the 8255

We are interested 
only in bits 7 & 6

Program Logic: Motor Operation
 

Procedure: 

1. Include the following initialization code at the beginning of your program. 

INIT: 
 MOV AL, 99  ; set up Port A IN, Port B OUT,  Port C IN 
 OUT 07, AL  ; and output this word  to control Port 
 MOV AL,0  ; data zero 
 OUT 03,AL  ; output to Port B to ensure all LEDs off 

2. Use an editor to write to your program. Name your file as motor_oper.asm  

3. Assemble and link your program using the TASM assembler to produce 

motor_oper.exe. 

4. Convert the motor_oper.exe file to binary format using the exe2bin.exe program 

by typing exe2bin motor_oper.exe at the DOS prompt. 

5. Convert the motor_oper.bin file to motor_oper.hex using the bin2hex.exe 

program by typing bin2hex motor_oper.bin at the DOS prompt. 



 75

6. Start the Flight86 monitor program. 

7. Download motor_oper.hex to the Flight86 controller board by typing at the ‘-‘ 

prompt 

: C:\FLIGHT86\ motor_oper.hex 

8. Before you run your program make sure the mode switches are in the correct 

position. 

Switch SW2A – Switch position
Switch SW2B – Motor position 
All other switches - OFF 

9. Now enter G 0050:0100 at the ‘-‘ prompt to run the program. 

10. Check the operation of the Motor by changing the state of the two leftmost 

switches. Make sure the Motor operates according to Table 1. 



 76

9.5 Lab Work – Part 2: Motor Speed Control 

Write a program to control the speed of the Motor. The speed of the motor must be 
controlled by the Potentiometer. The logic of the program is illustrated by the flowchart 
shown below: 

 

 



 77

Procedure: 

1. Include the initialization code at the beginning of your program. 

2. For your program, write a subroutine to read the ADC value. This subroutine can 
then be called using the CALL instruction. (Refer to section “Speed Control with 
a Potentiometer” for more information). 

3. Place this table after the last instruction of your program. 

TABLE DB 0AH ; 10 ms delay
  DB 09H ; 9 ms delay 
  DB 08H ; 8 ms delay 
  DB 07H ; 7 ms delay 
  DB 06H ; 6 ms delay 
  DB 05H ; 5 ms delay 
  DB 04H ; 4 ms delay 
  DB 03H ; 3 ms delay 
  DB 02H ; 2 ms delay 
  DB 01H ; 1 ms delay 

4. Use an editor to write to your program. Name your file as motor_speed.asm  

5. Assemble and link your program using the TASM assembler to produce 

motor_speed.exe. 

6. Convert the motor_speed.exe file to binary format using the exe2bin.exe program 

by typing exe2bin motor_speed.exe at the DOS prompt. 

7. Convert the motor_speed.bin file to motor_speed.hex using the bin2hex.exe 

program by typing bin2hex motor_speed.bin at the DOS prompt. 

8. Start the Flight86 monitor program. 

9. Download motor_speed.hex to the Flight86 controller board by typing at the ‘-‘ 

prompt 

: C:\FLIGHT86\ motor_speed.hex 

10. Before you run your program make sure the mode switches are in the correct 

position. 

Switch SW2B – Motor position
Switch SW3 – VOLTS 
All other switches – OFF 

11. Now enter G 0050:0100 at the ‘-‘ prompt to run the program. 

12. Check the speed control of the Motor by turning the Potentiometer both ways. 



 78

Experiment #10 
 

Introduction to the 8051 Microcontroller 
  

 
10.0 Objectives:   

The objective of this experiment is to learn to use the 8-bit 89C51 microcontroller to 
implement a simple LED controlling system. 

In this experiment, you will do the following: 

• Understand the difference between microprocessors and microcontrollers 

• Learn about the MCS-51 (8051) microcontrollers – in particular the ATMEL 

89C51 

• Implement a LED controlling system using the ATMEL 89C51 microcontroller 

• Learn to use the Microcontroller/EEPROM programming tool: WINLV 
 
10.1 Equipment, Software, and Components: 

• MicroMaster LV48 

• WINLV software 

• Assembler and conversion utilities (exe2bin, bin2hex) 

• AT89C51 microcontroller 

• 11.0592 MHz crystal 

• Resistors: 510, 8.2K 

• Capacitors: 33pF (2), 10pF 

• Proto-board (with 5V supply, LED’s, switches) 

 
10.2 Introduction:  

Microprocessors and Microcontrollers 

A microprocessor is a general-purpose digital computer central processing unit. To 
make a complete microcomputer, you add memory (ROM and RAM) memory decoders, 
an oscillator, and a number of I/O devices. The prime use of a microprocessor is to read 
data, perform extensive calculations on that data, and store the results in a mass storage 
device or display the results. The design of the microprocessor is driven by the desire to 
make it as expandable and flexible as possible.  
 
A microcontroller is a true computer on a chip. The design incorporates all of the 
features found in a microprocessor CPU: ALU, PC, SP, and registers, plus ROM, RAM, 
parallel I/O, serial I/O, counters and a clock circuit – all in a single IC. The 



 79

microcontroller is a general-purpose device meant to read data, perform limited 
calculations on that data and control its environment based on those calculations. The 
prime use of a microcontroller is to control the operations of a machine using a fixed 
program that is stored in ROM and does not change over the lifetime of the system. The 
microcontroller is concerned with getting data from and to its own pins; the architecture 
and instruction set are optimized to handle data in bit and byte size.  
 
Therefore, a microcontroller is a highly integrated device which includes, on one chip, 
all or most of the parts needed to perform an application control function. 

 

Microprocessor  
 
• CPU is stand-alone,  RAM, ROM, 

I/O, timer are separate 
• designer can decide on the  amount 

of ROM, RAM and I/O ports 
• expansive 
• versatile  
• general-purpose 
• mostly used in microcomputer 

systems 

Microcontroller 
 
• CPU, RAM, ROM, I/O and timer, 

etc. are all on a single chip 
• fix amount of on-chip ROM, RAM, 

I/O ports 
• for applications in which cost, 

power and space are critical 
• single-purpose 
• mostly used in embedded systems 

Microprocessors vs. Microcontrollers 

 

Microcontrollers are frequently found in home appliances (microwave oven, 
refrigerators, television and VCRs, stereos), computers and computer equipment (laser 
printers, modems, disk drives), cars (engine control, diagnostics, climate control), 
environmental control (greenhouse, factory, home), instrumentation, aerospace, and 
thousands of other uses. In many items, more than one processor can be found. 
 



 80

Microcontrollers come in many varieties. Depending on the power and features that are 
needed, one might choose a 4, 8, 16, or 32 bit microcontroller. The following table lists 
some of the commonly used microcontrollers. 

     
4-bit Microcontrollers 

Texas Instruments TMS 1000 

National COP420 

Hitachi HMCS40 

Toshiba TLCS47 

8-bit Microcontrollers 

Intel 8048 

Intel 8051 

Microchip PIC16C56 

National COP820 

Motorola 68HC11 

Texas Instruments TMS7500 

Zilog Z8 

16-bit Microcontrollers 

Motorola MC68332 

Motorola 68HC16 

Intel MCS-96 Family of Microcontrollers

National HPC16164 

Hitachi H8/532 

32-bit Microcontrollers 

Intel 80960CA, KA, KB, MC 

LR 33000 

AMD Am29050 

NS 32000 

Table: Some of the commonly used microcontrollers 

10.2.1 MCS-51 Family of Microcontrollers 

The MCS-51 is a family of microcontroller ICs developed, manufactured, and marketed 
by Intel Corporation. Other IC manufacturers, such as Siemens, AMD, ATMEL, Philips, 
etc. are licensed “second source” suppliers of devices in the MCS-51 family.  



 81

10.2.2 The 8051 Microcontroller 

The generic MCS-51 IC is the 8051 8-bit microcontroller, the first device in the family 
offered commercially. It is the world's most popular microcontroller core, made by many 
independent manufacturers (truly multi-sourced).  There were 126 million 8051s (and 
variants) shipped in 1993!! Its features are summarized below: 

- CPU with Boolean processor 
- 4K bytes ROM (factory masked programmed) 
- 128 bytes RAM 
- Four 8-bit I/O ports 
- Two 16-bit timer/counters 
- Serial Interface (programmable full-duplex) 
- 64K external code memory space 
- 64K external data memory space 
- Five interrupts (2 priority levels; 2 external) 
 

 
10.2.3 8051 Flavors 
 
The 8051 has the widest range of variants of any embedded controller on the market.  
The smallest device is the Atmel 89c1051, a 20 Pin FLASH variant with 2 timers, UART, 
20mA.  The fastest parts are from Dallas, with performance close to 10 MIPS!  The most 
powerful chip is the Siemens 80C517A, with 32 Bit ALU, 2 UARTS, 2K RAM, PLCC84 
package, 8 x 16 Bit PWMs, and other features. 
 
Among the major manufacturers are: 
 
        AMD       Enhanced 8051 parts (no longer producing 80x51 parts) 
        Atmel     FLASH and semi-custom parts, e.g., 89C51 
        Dallas    Battery backed, program download, and fastest variants 
        Intel     8051 through 80c51gb / 80c51sl 
        OKI       80c154, mask parts 
        Philips   87c748 thru 89c588 - more variants than anyone else 
        Siemens   80c501 through 80c517a, and SIECO cores 
 



 82

10.2.4 An Architectural Overview of the MCS-51 (8051) 
Microcontroller 
 

 
Figure: Block Diagram of the 8051 Core 

10.2.5 Data Storage 
 
The 8051 has 256 bytes of RAM on-chip. The lower 128 bytes are intended for internal 
data storage. The upper 128 bytes are the Special Function Registers (SFR). The lower 
128 bytes are not to be used as standard RAM. They house the 8051’s registers, its 
default stack area, and other features. 
 
 
 
 
 
 
 
 
 
 
 
 

Oscillator 
and timing 

4K  
 

ROM 

128 Bytes 
 

RAM 

Two 16 Bit 
Timer/Event 

Counters 

8051 
CPU 

Bus  
Control 

Programmable 
I/O 

Serial  
Port 

Internal data bus

External Interrupts Control P0 P1 P3 

Interrupt 
Control 

Counter 
 Inputs 

Subsystem 
Interrupts 

Serial 
Input 

Serial  
Output 

 

00H

Special 
Function
Registers

7FH
80H

FFH

Internal
Data 

Storage

P2 



 83

 Register Banks 
 

• The lowest 32 bytes of the on-chip RAM form 
4 banks of 8 registers each. 

• Only one of these banks can be active at any 
time. 

• Bank is chosen by setting 2 bits in PSW 
• Default bank (at power up) is bank 0 (locations 

00 – 07). 
• The 8 registers in any active bank are referred 

to as R0 through R7.  
 
Given that each register has a specific address; it 
can be accessed directly using that address even if 
its bank is not the active one. 

 

Bank 00

Bank 01

Bank 02

Bank 03

00 
01 
02 
03 
04 
05 
06 
07 
08 
09 
0A 
0B 
0C 
0D 
0E 
0F 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
1A 
1B 
1C 
1D 
1E 
1F 

R0 
R1 
R2 
R3 
R4 
R5 
R6 
R7 
R0 
R1 
R2 
R3 
R4 
R5 
R6 
R7 
R0 
R1 
R2 
R3 
R4 
R5 
R6 
R7 
R0 
R1 
R2 
R3 
R4 
R5 
R6 
R7 

 

 
 
10.2.6 Special Function Registers 
 
The upper 128 bytes of the on-chip RAM are used to house special function registers. In 
reality, only about 25 of these bytes are actually used. The others are reserved for future 
versions of the 8051. 
 
These are registers associated with important functions in the operation of the MCS-51. 
 
Some of these registers are bit-addressable as well as byte-addressable. The address of 
bit 0 of the register will be the same as the address of the register. 
 

• ACC and B registers – 8 bit each 
• DPTR : [DPH:DPL] – 16 bit combined 
• PC : Program Counter – 16 bits 
• Stack pointer SP – 8 bit 
• PSW : Program Status Word 
• Port Latches 
• Serial Data Buffer 
• Timer Registers 
• Control Registers 

 
See Appendix B for a complete list of Special Function Registers and their addresses. 
 
 



 84

Register A or ACC – Accumulator 
 
This register is commonly used for move operation and arithmetic instructions. It 
operates in a similar manner to the 8086 accumulator. It is also bit addressable. It can be 
referred to in several ways: 

• Implicitly in op-codes.  
• Referred to as ACC (or A) for instructions that allow specifying a register. 
• By its SFR address 0E0H. 

 
Register B 
 
It is commonly used as a temporary register. It is also bit addressable. 
 

• Used by two op-codes 
o MUL AB, DIV AB 

• B register holds the second operand and will hold part of the result 
o Upper 8 bits of the multiplication result 
o Remainder in case of division. 

• Can also be accessed through its SFR address of 0F0H. 
 
DPH and DPL Registers 
 
These are two 8-bit registers which can be combined into a 16-bit DPTR – Data Pointer. 
The DPTR is used by commands that access external memory. 
 

• Also used for storing 16bit values 
MOV DPTR, #data16   ; setup DPTR with 16bit ext address 
MOVX A, @DPTR   ; copy mem[DPTR] to A 

• Can be accessed as 2 separate 8-bit registers if needed. 
• DPTR is useful for string operations and look up table (LUT) operations. 

 
Port Latches – P0, P1, P2, and P3 
 
These registers specify the value to be output on an output port or the value read from an 
input port. They are also bit addressable. Each port is connected to an 8-bit register in the 
SFR.  

P0 = 80H, P1 = 90H, P2 = A0H, P3 = B0H 
 

• First bit has the same address as the register. 
• Example: P2 has address A0H in the SFR, so 

o P2.7 or A7H refer to the same bit. 
• All ports are configured for output at reset. 

 
 
 



 85

PSW – Program Status Word 
 
Program Status Word is a bit addressable 8-bit register that has all the status flags. 
 

CY AC F0 RS1 RS2 OV - P 
 
Symbol Position Function 

CY PSW.7 Carry Flag 
AC PSW.6 Auxiliary Carry Flag. For BCD Operations 
F0 PSW.5 Flag 0. Available to the user for general purposes. 

RS1 PSW.4 
RS2 PSW.3 

Register bank select bits. Set by software to determine which 
register bank is being used. 

OV PSW.2 Overflow Flag 
- PSW.1 Not used 
P PSW.0 Parity Flag. Even Parity. 

 
10.2.7 8051 Instructions 
 
The 8051 has 255 instructions. Every 8-bit op-code from 00 to FF is used except for A5. 
The instructions are grouped into 5 groups: 

• Arithmetic 
• Logic 
• Data Transfer 
• Boolean 
• Branching 

 
The following table lists some of the commonly used instructions. See Appendix A for a 
complete list of the 8051 instructions. 
 

Instruction Description Execution Cycle
ACALL sub1 Call a subroutine labeled sub1 2 
CJNE a, b, addr Compare a and b, if they are not equal then jump to addr 2 
CLR x Set the bit x to 0 1 
DJNZ a, addr Decrease a by 1, then check if a = 0, then jump to addr 2 
INC a Increase a by 1 1-2 
MOV a, b Move the content in b to a 1-2 
MOVC a, addr Move the content stored in address addr to a 2 
RET Return to main program from a subroutine 2 
RETI Return to main program from an interrupt subroutine 2 
SETB x Set the bit x to 1 1 
SJMP addr Jump to the addr 2 
XRL a, b Perform a XOR b (XOR: Exclusive Or) 1-2 
 



 86

10.2.8 ATMEL 89C51 Microcontroller 
 
The AT89C51 is a low-power, high-performance CMOS 8-bit microcomputer with 4K 
bytes of Flash Programmable and Erasable Read Only Memory (PEROM). The 
device is manufactured by Atmel and is compatible with the industry-standard MCS-51 
instruction set and pin-out. The on-chip Flash allows the program memory to be 
reprogrammed in-system or by a conventional nonvolatile memory programmer. By 
combining a versatile 8-bit CPU with Flash on a monolithic chip, the Atmel AT89C51 is 
a powerful microcomputer which provides a highly-flexible and cost-effective solution to 
many embedded control applications. 
 
Features 
 

• Compatible with MCS-51™ Products 
• 4K Bytes of In-System Reprogrammable Flash Memory Endurance: 1,000 

Write/Erase Cycles 
• Fully Static Operation: 0 Hz to 24 MHz 
• Three-level Program Memory Lock 
• 128 x 8-bit Internal RAM 
• 32 Programmable I/O Lines 
• Two 16-bit Timer/Counters 
• Six Interrupt Sources 
• Programmable Serial Channel 
• Low-power Idle and Power-down Modes 

 
A detailed Block Diagram of the AT89C51 microcontroller is shown in the figure below. 
 



 87

 
 

Detailed Block Diagram 



 88

The AT89C51 comes in a 40 pin package. The Pin Configuration of the AT89C51 
microcontroller is shown in the diagram below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

32 pins are used for the 4 ports - P0, P1, P2, and P3 
1 pin each for VCC and VSS 
1 pin for the ALE (Address Latch Enable) 
1 pin for EA/VPP 

• EA - External Address  
• VPP - Program Voltage for EPROM based versions of the 8051 

1 pin each for XTAL1 and XTAL2 - Connections for clock crystal 
1 pin for PSEN - “Program Store Enable” 

• Read signal for external program memory 
1 pin for RST - Reset 

 

 
PDIP Pin Configuration 

89C51



 89

10.3 Pre-lab: 
 

1. Review all the above sections of this experiment and Appendix A, B, and C. 
2. Look for information on the 8051 microcontroller in the library and on the 

internet. 
 

10.4 Lab Work: 
 
In this experiment, we will implement a simple LED control system on the 89C51 
microcontroller. This implementation involved three steps: 
 

1. Software programming 2. Hardware connections 3. Microcontroller programming 
 
Procedure: Software 

1. Use an editor to write the program shown below. Name your file as 
led_blink.asm. 

; This program blinks LEDs every half second 
 
ORG 00H        ; After reset, start fetching instructions from 00H
  
      MOV A, #55H      ; load 0101 0101 in A  
AGAIN: 
      MOV P1, A      ; move data to Port A 
 
      ACALL DELAY      ; call delay routine 
 
      CPL A       ; invert A to 1010 1010 
      SJMP AGAIN      ; repeat blinking 
 
DELAY:        ; this routine implements a delay 0f 500ms 
      MOV R4, #05      ; move 5 in R4 
OUTER2: MOV R3, #200      ; move 200 in R3 
OUTER1: MOV R2, #0255      ; move 255 in R2 
INNER:    DJNZ R2, INNER      ; decrement R2 until 0 
      DJNZ R3, OUTER1   ; decrement R3 until 0 
      DJNZ R4, OUTER2   ; decrement R4 until 0 
      RET 
 
END 

2. Assemble and link your program using the TASM assembler to produce 
led_blink.exe.  

3. Generate the HEX file led_blink.hex for your program. 

 



 90

Procedure: Hardware 
 

1. Turn OFF the power supply to your board. 
2. Obtain the necessary components from your lab instructor and connect the circuit 

as shown in the schematic below: 
 

 
 

3. Connect the rest of the pins of Port 1 to an LED each. 
Note 1: Only P1.0 (Pin 0 of Port 1) is shown connected to an LED. 
Note 2: You may be directly able to connect to LED’s on the board provided 
without using any resistor with the LED’s. Check with your lab instructor. 

 
4. Make sure all your connections are properly done and turn ON the power supply. 
 
5. Observe that no LED is blinking. 



 91

Procedure: Microcontroller Programming 

Step 1: Run WinLV  
Launch the WinLV program. See Appendix C - An Introduction to WinLV. 
 
Note: During start-up, the red light of the programmer will go ON indicating that the 
software has successfully found the programmer. If the software fails it will display a 
prompt to enter a demo-mode. If this is the case, double check the cable connected to the 
parallel port and the power supply of the programmer. 
 
Step 2: Select Device (ATMEL 89C51 microcontroller) 
Choose the device that you are using by selecting it from the Select Device window. To 
open the Select Device window – click the left hand mouse button on Programmer from 
the top menu bar then click on Select Device. Use the mouse to browse through the Parts 
Database and select a device from the Programmable Parts section then click on Accept 
to confirm your choice. 
 
Step 3: Load File into Buffer 
Select the file you would like to program into the Microcontroller following these steps:- 

• Select the File menu and then Open… 
Select which file you want to load into the buffer OR type the file name into the 
File Name box. Locate the led_blink.hex file generated from the assembly code. 

• If any files that you expecting to see aren't there try using the Files of Type drop 
down menu to select which file type is displayed in the main window. 

• Use the Open as drop down menu to select which Format the file will be opened 
as and loaded into the buffer. Make sure that the value of the field "Open as" is : 
HEX – Intel" or " HEX - auto recognition ". 

• Set the Defaults to pre fill the buffer with 0xFF so that all empty address locations 
are filled with FF. 

 
Step 4: Place Device in Programmer 
Place the device you've selected to program into the ZIF socket on the programmer. 
Make sure that the device is aligned with the bottom of the ZIF socket. 
 
Step 5: Programme the Device 
Follow these final steps to finish programming the device: 

• Select Operations from the Programmer menu to view the “Operations for 
Device” dialogue window. 

• Click on the Programme button in the Operations dialogue window. 
• The device in the socket will now be erased, programmed and verified. 

 
Finally, disconnect the IC from the programmer and reconnect it to the circuit. Reset the 
microcontroller and check if your program is working correctly. 
 



 92

Appendix A – 8051 Instruction Set 
 
The instructions are grouped into 5 groups 

o Arithmetic 
o Logic 
o Data Transfer 
o Boolean 
o Branching 

 
A complete list of all instructions in each of the above 5 groups is shown from the next 
page. 
 
Notes on Data Addressing Modes 
 

Rn - Working register R0-R7 
direct - 128 internal RAM locations, any l/O port, control or status register 
@Ri - Indirect internal or external RAM location addressed by register R0 or R1 
#data - 8-bit constant included in instruction 
#data 16 - 16-bit constant included as bytes 2 and 3 of instruction 
bit - 128 software flags, any bitaddressable l/O pin, control or status bit 
A – Accumulator 
 

Notes on Program Addressing Modes 
 

addr16 - Destination address for LCALL and LJMP may be anywhere within the 
64-Kbyte program memory address space. 
addr11 - Destination address for ACALL and AJMP will be within the same 2-
Kbyte page of program memory as the first byte of the following instruction. 
rel - SJMP and all conditional jumps include an 8 bit offset byte. Range is + 127/– 
128 bytes relative to the first byte of the following instruction. 

 
All mnemonics copyrighted: Intel Corporation 1980 
 



 93

 
 
 
 
 
 
 



 94

 



 95

 



 96

 



 97

Appendix B – 8051 Special Function Registers 
 

 



 98

Appendix C - An Introduction to WinLV 

Introduction: 
 
The WinLV is an interface to the functionality of the MicroMaster LV48 produced by 
ICE Technology. It has a user-friendly GUI (Graphical User Interface) that is optimized 
to enable quick and easy access to all functionalities. The software contains many 
features and a very good help system. We will cover here the minimum functionality that 
is required for this experiment; however the Help system offers many tutorials that we 
found very helpful. 
 
Installation: 
 
The software is spanned on 3 floppy disks. The installation file is located on the first disk. 
Installation of the WinLV program is as easy as any standard windows installation. 
Check www.icetech.com for any updates. 
 
PC connection: 
 
MicroMaster LV48 box hooks to the parallel port of a PC using a standard parallel port 
cable.  
 
Software Start-up: 
 
 

    

  Start Screen    WinLV icon 
 
Before you start the software make sure that the programmer is connected to the PC and 
its power supply is plugged. The software will recognize the type of the programmer 
when run, there are other programmer types produced by ICE that uses the same 
software.  
 



 99

Basic Screen Components: 
The basic on-screen components of the WinLV software are as follows :-  

1)  Programming Buffer Window 

 

Most part of the window is used for displaying the programming buffer. The buffer can 
be viewed differently by selecting any of the Buffer View options (see Display Modes 
below). The buffer can also be edited so that data can be changed before or after it has 
been programmed into a device. 
 

2) WinLV Toolbars & Display Panels 

The toolbars & display panels allow you to view current WinLV information and settings 
as well as select specific functions as an alternative to using the WinLV menus. The 
Toolbars and Panels are :-  
 

General Toolbar: 

 

The options from left to right are: 

1. Opens a new Buffer or Fuse map depending on which device is currently 
selected. 

2. Opens a previously saved file. 

3. Saves the currently opened file. 

4. Opens a previously saved project. 



 100

5. Saves the currently opened project. 

6. Print the contents of the buffer/fuse map. 

7. Preview the buffer contents to see how it will look when printed. 

8. Cut the highlighted portion of the buffer (move to the clipboard). 

9. Copy the highlighted portion (move to the clipboard). 

10. Paste the current contents of the clipboard. 

11. WinLV Help 

 

 

The options from left to right are: 

1. Fill buffer with user-defined value. 

2. Go to specific address/value in the buffer. 

3. Search the currently open buffer to find a specific value at an address. 

4. Search the currently open buffer to find the previous occurrence of specific 
find value. 

 
5. Search the currently open buffer to find the next occurrence of specific find 

value. 
 

6. Swap bytes in the currently open buffer. 

7. Swap words in the currently open buffer. 

8. Open the checksum calculator. 

Edit Toolbar 



 101

 

It displays modes operative when viewing programming address buffer. 

The options from left to right are: 

1. View the currently open buffer in Nibble Mode. 

2. View the currently open buffer in Byte Mode. 

3. View the currently open buffer in Octal Mode. 

4. View the currently open buffer in 12 Bit Mode. 

5. View the currently open buffer in Word Mode (byte 1:byte 0). 

6. View the currently open buffer in Word Mode (byte 0:byte 1). 

 

Information Panel 

 

The displayed information is: 

1. Device manufacturers name 

2. Device part number 

3. Device memory size 

4. Number of pins 

5. Manufacturers ID code 

6. Device ID code 

7. Verification information 

 

1 2
3 4 5 6 7

Display Mode Panel 



 102

 

The options from left to right are: 

1. Select Device 

2. Device Operations 

3. Match 74/4000 device 

3) WinLV Menus 

The menu selection bar along the top of the screen allows you to view the WinLV menus 
and then select specific menu items. Use the mouse or keyboard to select the menus and 
menu commands.  

 

Device Selection: 
 
Before you can program any device you must select it and tell WinLV that you want to 
work with it. The process is easy:  

Go to the (Programmer → Select Device) option or press  on the programmer toolbar. 

The following window will appear:   

 

The Programmer toolbar 



 103

To select a device you can either use the left pane to find the manufacturer or use the 

searching tool  to find the device by part number as shown in the figure below: 

 

 

Once you find your device click "Accept" to go back to the previous "Database Viewer", 
then "Accept" again and you will go back to the main window. You will notice that your 
device name is displayed in the title of the window as shown below: 
 

 



 104

Loading Data: 
 
Select the file you would like to program into the selected EPROM or Micro following 
these steps: 

• Select the File menu and then Open… or press  

 

• Select which file you want to load into the buffer. OR type the file name into the File 
Name box 

 
• If any files that you expecting to see aren’t there try using the Files of Type drop 

down menu to select which file type is displayed in the main window 
 
• Use the Open as drop down menu to select which format the file will be opened as 

and loaded into the buffer. 
 
• Set the Defaults to pre-fill the buffer with 0xFF so that all empty address locations are 

filled with FF. 
 
• Remember - If you want to specify more advanced file open settings this can be set in 

the lower half of the Open dialogue window. 
 
• Remember - If the buffer size is not large enough for the file selected then it will 

truncate the file before loading. To increase the buffer size select New Buffer from 
the File menu and use the slider bar to increase the buffer size and then re-load the 
file. 

 



 105

Programming the Device 
 
Once the data is in the buffer, you can go ahead and program it on the device. To do that 

go to (programmer→ Operations) or click  . You will get the following window: 
 

 

You can do a lot of operations here, they include:  

 Read the existing data in the device. 

 Device checksum 

 Verify 

 Blank check 

 Erase, Program, Verify 

The latter option is most commonly used. After clicking this option the contents of the 
buffer will be programmed on the device and it is ready to be connected to the circuit. 
 
 


